

Conclusion

Assessing Multi-Task Placement Algorithms in RCUs

 Task & Instruction Placement Algorithms

ÅFirst Come First Serve (FCFS) ς assigns first ready task
 to first available engine
ÅRandom ς Selects a random available engine

 for task execution
ÅDemand ς Considers various criteria (insts/task, intensity etc)
 and classifies both task and engines for
 appropriate execution

OmpSs and Scheduling

ÅrS Unit ς provides distributed storage and communication
 among functional units
ÅrS interconnect - torus-like, single-cycle multi-hop communication.
ÅRead Register Buffer ς manages external data and immediate values
ÅWrite Register Buffer ς sends data to external functional units/ D$ etc

ÅConventional processors possess many power and performance issues
ÅTo overcome these issues, industry has steered towards multicore and
heterogeneous computing platforms

ÅOur previous work provides a nuanced approach to single core processorsς from
compilation to architecture, while maintaining compatibility

ÅArchitecture referred to as RCUs (Reconfigurable Computing Units)
ÅSuccessful results for sequential performance, requires optimizations

Anita Tino and Kaamran Raahemifar

Department of Electrical & Computer Engineering, Ryerson University

ÅApply a task-based model (OmpSs) to RCUs for multi-task execution
ÅCreate and thoroughly assess the effects of task and instruction
placement algorithms on RCUs
ÅRedesign the frontend and backend logic to support multi-engine
execution

ÅSoftware simulations and RTL prototypes

Execution Example

RCU Methodology

ÅLogic Compiler ς standard compiler,
maintains compatibility, produces binary
ÅPhysical Compiler ς Inputs binary, has
knowledge of underlying architecture

ÅOmpSs programming model allows RCU to
schedule tasks and determine dependencies
ÅFrontend logic uses this info to schedule tasks in
conjunction with configuration data

Å//¦ΩǎΥ
Å Consume 55.92% power of single core CPU
ÅIPC improvement over single core CPU = 1.47x

ÅSame performance as dual-core CPU
ÅExperience 2% ς 16.4% fluctuation in performance in task
placements, where Demand achieves best IPC results
Å2% - 7.5% fluctuation in performance - inst placements,
Demand/Dyn-F intra-method achieving best IPC results
ÅAverage 2-3 hops depending on engine configuration
ÅFCFS/Rand-Intra achieves 23% more energy efficiency
than other methods

- C++ custom in-house simulator,
ARMv7 ISA
- Intel Core i7-5820K @ 3GHz, 16GB
RAM
- RTL prototype ς VHDL, OpenPDK
@45nm, CACTI

-RCUs now support multi-task execution
-Exceed single core performance by 1.48x on
average
-Demand/Dyn-F placement methods provide
highest performance, with FCFS/Rand attaining
best energy efficiency
-Placement methods contribute to 16.7% and
23% fluctuation in performance and energy
efficiency respectively

Introduction

Architectural Features

Objectives

Compilation Details

Engine Architecture

rS Architecture

RCUs - How They work Experimental Setup

Experimental Results

Conclusion

Instruction Placement Task Placement

