Hardware Architectures for Frequent Itemset Mining Based on Equivalence Classes Partitioning

Martin Letras René Cumplido Raudel Hernández-León

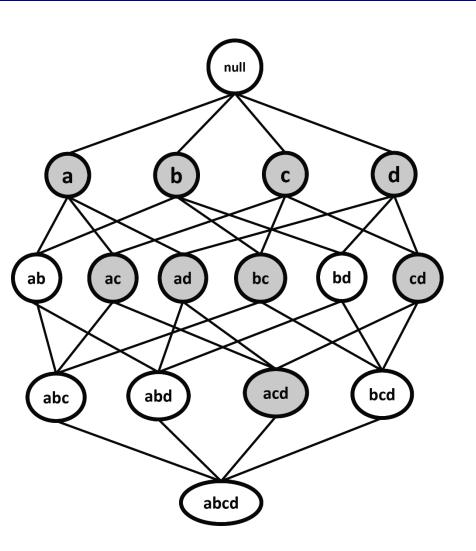
Computer Sciences Department

National Institute of Astrophysics, Optics, and Electronics

Motivation

Frequent Itemset Mining

Id	Items
1	Milk, Bread
2	Butter, Bread
3	Butter
4	Milk, Butter, Bread
5	Bread
6	Milk, Butter, Bread

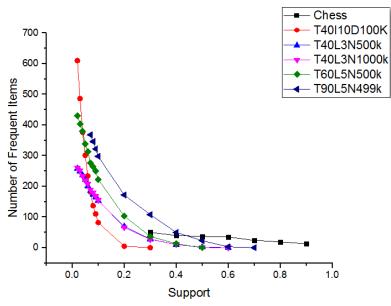

Transactions dataset.

Itemset	Cover	Support	Frequency	
{}	1,2,3,4,5,6	6	100%	
{Milk}	1,4,6	3	50%	
{Butter}	2,3,4,6	4	66%	
{Bread}	1,2,4,5,6	5	83%	
{Milk, Butter}	4,6	2	33%	
{Milk, Bread}	1,4,6	3	50%	
{Butter, Bread}	2,4,6	3	50%	
{Milk, Butter, Bread}	4,6	2	33%	

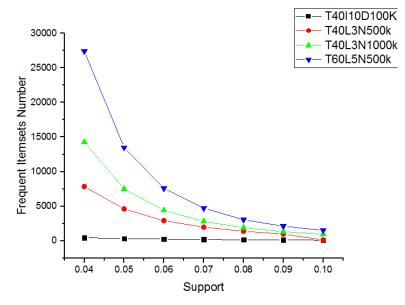
Support calculations.

Search Space

ID	Items
1	a, d
2	b, c, d
3	a, c
4	a, c, d
5	a, b
6	a, c, d
7	b, c
8	a, c, d
9	b, c
10	a, d

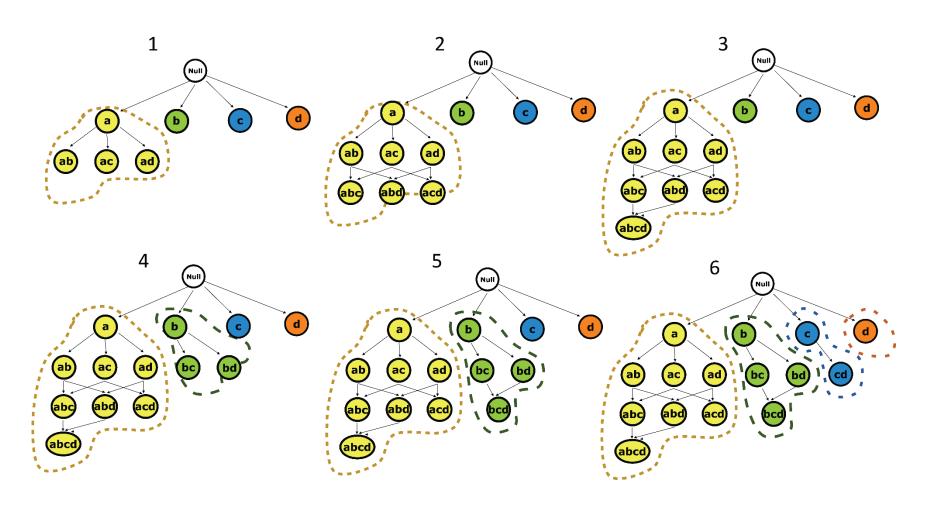

For example in this dataset there are only **four** items. 16 itemsets can be generated, this shows the exponential nature of this problem.

Search Space



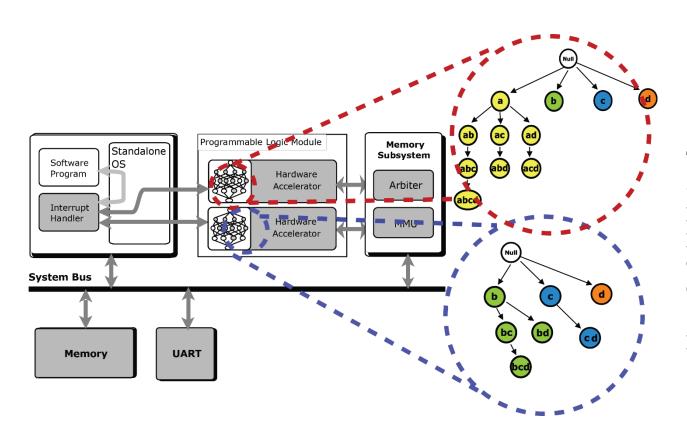
Dataset	Binary Size(MB)	Length ner		Number of items
Chess	0.013	20	3196	75
T40I3N500k	11.9	40	500k	299
T40I3N1000k	24.1	40	1000k	300
T60I5N500k	18.9	60	500k	500

Datasets employed in to test FIM algorithm. The number of frequents itemsets generated grow exponentially.


Frequent Items generated

Frequent Itemsets generated

Search Strategy Proposed



Search strategy based on equivalence classes partition. Each equivalence class is processed independently each other.

Hardware Architecture

Two compact hardware architectures have been proposed to approach this problem. Figure shows the dual core architecture that divides the entire search space between two processor elements.

Thanks!, see you in poster session.