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University FPGAs for High Performance

of Glasgow Computing (HPC)?

FPGAs now beginning to be used in mainstream computing
— big-data and big-compute (HPC)

e Can provide better FLOPS/Watt for some types of applications

e Difficult to tune even with today’s HLS tools like OpenCL, Maxeler, etc
— E.g. 3 days vs 3 weeks

e A still higher-level approach is needed
— automatic architectural exploration of the FPGA design-space
— make FPGAs more accessible to scientists/HPC users

e The argument can be generalized to heterogeneous computing targets

Lots of promise, encouraging recent developments, but miles to go still...



University FPGAs for High Performance

=7 of Glasgow Computing (HPC)?

FPGAs now beginning to be used in mainstream computing
— big-data and big-compute (HPC)

e Can provide better FLOPS/Watt for some types of applications

Today’s high-level language is
tomorrow’s compiler target

¢ ASTIHIhigner-ievel approdcn Is needed

— automatic architectural exploration of the FPGA design-space

— make FPGAs more accessible to scientists/HPC users

e The argument can be generalized to heterogeneous computing targets

Lots of promise, encouraging recent developments, but miles to go still...



Un1vers1ty Why are we working on an FPGA cost-

7 of Glasgow model?

e Qur proposed TyTra compiler flow requires evaluation of
multiple design-variants, in order to converge on the best one.

e |trequires a light-weight, reasonably accurate cost-model.

A light-weight cost-model is the linchpin of our proposed FPGA optimizing
compiler flow



OUTLINE OF TALK



Towards an optimizing compiler

o m

il University

> of Glasgow for running scientific code on

FPGAS

1. The TyTra Framework
— Compiler flow
— The Intermediate Representation (IR)
— Need for a cost-model

2. Developing a Cost-Model
—  Models of abstraction

—  Cost-model for resource-utilization and performance

3. Observations

- Results: design-space exploration potential, accuracy of cost-model, potential for
improved performance

— Limitations
— The way forward

An auto-tuning programming approach, for scientific computing, requiring a
fresh approach to cost-modelling






University

<7 of Glasgow Blue Sky Target

Heterogeneous
HPC Target
Legacy
Scientific Code

y 3

Cost Model

b

Optimized HPC
solution!

Make HPC on “exotic” architectures more accessible to scientists
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[ Yamversity The Cunning Plan

7 of Glasgow

1. Use the functional programming paradigm
type-transformations to create design-variants

2. Have an Intermediate Language that can:

— express the design-space
— be costed directly and quickly

3. Create a light-weight cost-model that can estimate:

— performance
—  resource-utilization

Exploit the “elegance” of functional abstraction to generate equivalent design
variants, then lower it to an IR that can be costed



a3 University Key contributions

of Glasgow Following on from the cunning plan

High-level Functional
Language e.g. Idris
[baseline]

1. Type transformations for
generating program variants (o ererate program varnts

2. Anew(ish) intermediate %)“”a““ %)““a“”
language based on LLVM, (=) (o) -
and LY % :

-
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3. Alight-weight cost-model e |

Generator

Selected
Variant-X

-
- -

-
-
-
-

-
-

-
-
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-

( Kernel in HDL )
HLS Framework

Integration
‘ Solution '

Generating variants, and connecting them to a cost-model (and generator) via an
appropriate Intermediate Representation




University The TyTra Flow

of Glasgow What’s keeping us busy these days

High-level Functional Refactored
Language e.g. Idris < Fortran Code
[baseline]

Apply type-tranformations
to generate program variants

[
== HLL
variant-N 1

TyTra-IR
variant-N

HLL
variant-1

Legacy Fortran
Scientific Code

TyTra-IR
variant-1

this work

----- Selected PP
S . Variant-X J __.-""

-

Code- L °=~-n] _--""
Generator p
( Kernel in HDL )

‘ Solution '

HLS Framework
Integration
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L}%‘;ﬁg&% Key contributions

1. Type transformations for generating program variants

2. A new(ish) intermediate language based on LLVM, and

3. A light-weight cost-model

Generating variants, and connecting them to a cost-model (and code-generator)
via an appropriate Intermediate Representation



T University Type Transformations

of Glasgow Why Functional Programming

e Describe what something is, not what to do

— not imperative
— no “side-effects”

e High-level types that describe functions as well as variables

e Transformation of vector-types can be done in a provably
correct manner

* Type-transformations translate to design-variants on the
FPGA

A functional paradigm with high-level functions allows creation of design-variants
that are correct-by-construction.



i) University Type Transformations

% of Glasgow lllustration

Vector Types

e typeA :Vect im int --1D integer vector sized im

e typeB :Vect km Vect im int Y transformed 2D data

Program Variants

e output map,;.. input --original program

e inputTra reshapeTo km input

--reshaping data

e output map,., (mapg;,. inputTra--new program

Smple and provably correct vector transformations in the functional paradigm
enable generation of “program-variants”



University Type Transformations

4 of Glasgow Illustration

output = map,;.. kernel func inputlD _l

1D vector of size im

e Ol @) - |

Kernel Pipeline on FPGA

input2D = reshapeTo km inputlD
output = map,,. (mapliE kernel func) input2D—¢

1D vector of size im /km

C i » Ol @) - [ @

7]
8 Kernel Pipeline on FPGA
c ® .
8< : .
g 1D vector of size im /km
N

= r N _instr__
= ) o> e

N Kernel Pipeline on FPGA

The program-variants from high-level transformation translate into design-
variants on the FPGA
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L}%‘;ﬁg&% Key contributions

1. Type transformations for generating program variants

2. A new(ish) intermediate language based on LLVM, and

3. A light-weight cost-model

Generating variants, and connecting them to a cost-model (and generator) via an
appropriate Intermediate Representation



University

of Glasgow A New Intermediate Language

@main.a = addrSpace(12) uil8,
; l i |.||_' \ i
3 @...[other ports]

4 define wvoid @fl ( ...args...) pipe {

- 5 uil8 %1 = add uil8 %a, %b
baseline c  wilB %2 .

17 L
o Wy i

add uilB8 %c,

uils = mul uil8 %=1, %2
g uil8 %y = add uil8 %3, @k }
define wvoid @main () {
10 call @fl(...args...) pipe !

~>

1 @main.a 01 =
2 @main.a_ 02 = ...
3 @...[other ports]
4 define wvoid @fl ( ...args...) pipe {...}
ﬂnmﬂonaﬂy g defiTi v?i? @f 2 (...afgs:..) par {
: ca @ ...args... ipe
equivalent - (I S S
variant 8 call @fl(...args...) pipe
9 call @fl(...args...) pipe }
10 define wvoid @main () {
11 call @f2(...args...) par }
—

o
Design-variants are lowered into an Intermediate-Representation, making it easier

to estimate cost, performance, and then generate HDL code



| University

=7 of Glasgow

A New Intermediate Language
Expressing Configurations in the IR

;1. Pipeline with
combinatorial blocks
pipe {
instr
instr
combaA ()
..}

;2. Data-parallel
pipelines
par {
pipeA()
pipeA()
R |

[

;3. Coarse-grained
pipeline

pipe {

pipea()

pipeB ()

cee )

;4. Data-parallel
Coarse-grained pipeline
par {
pipeTop ()
pipeTop ()
.
;where
pipeTop{
pipeA()
pipeB ()
-}

Nesting functions of types pipe, par, seq and comb in different combinations
enables expression of different design configurations



#7s) University Now that we have design

of Glasgow variants...

How do we know which variants are valid (fit on the FPGA)?

How do we know which one performs the best?



DEVELOPING THE COST-
MODEL



L}%‘;ﬁg&% The Cost Model Use-Case

) Device-specific
: : costing parameters

One-time input
for each unique

FPGA target
(Benchmark Experiments)

TyTra-IR code >—) —-)< Resource estimates

Cost Model

Target description >—} —)-< Perf' estimate

N

N

A set of standardized experiments for each new target feeds empirical data to the
cost model, and the rest comes from the IR description.
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ngmversuy Pre-requisite: Models Of Abstraction

Glasgow

Platform model

Memory hierarchy model
Execution model

Design-space and cost-space model
Memory execution model

O Ul U

Data access pattern model

Models of Abstraction needed to have a systematic way to reason about the
complex FPGA-design space
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L}%‘gg&% Pre-requisite: Models Of Abstraction

Platform model
(More or less) based

Memory hierarchy model
on OpenCL standard

Execution model
Design-space model
Memory execution model

O Ul

Data access pattern model

Models of Abstraction needed to have a systematic way to reason about the
complex FPGA-design space
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ifa] University Platform And Memory Model

of Glasgow

Global (/) / Constant Memary (.5)
(DRAM)

N

Local Memory (2)
(On-chip Block RAMs)

Processing Element  Private Memary
~ (Kernel Pipeline) (Registers) (1)

Stream Control

N Compute Unit
Compute Device (FPGA)

F Y

‘ UpenCL AP
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ngmversuy Pre-requisite: Models Of Abstraction

Glasgow

Platform model

Memory hierarchy model
Execution model
Design-space model
Memory execution model

Oy UL SR

Data access pattern model

Models of Abstraction needed to have a systematic way to reason about the
complex FPGA-design space



| University

of Glasgow Design Space

Degree of
Re-use
A

C4 Scalar Instruction Processor
€5 Vector Instruction Processor
€6 Run-time Reconfiguration

C2 Medium-grained
parallelism by pipelining
loop iterations

C3 Medum-grained | |C0 A"_'I"""'"'ET'E in
(vectorization of loops) the design space o
or Loarse-grained Pipeline

(thread) parallelism Parallelism
plane). fing-grained parallelism

F\K:;:h_
\ (ILP) presumed in this plane

B The ‘compute-wall” limits the maximurm
fread piveling and/or thread parallelisr

Parallelism

€1 Replicated pipeline lanes (xy-

A way to look at the design-space for FPGA implementation. This still does not
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ngmversuy Pre-requisite: Models Of Abstraction

Glasgow

Platform model

Memory hierarchy model
Execution model
Design-space model
Memory execution model

O Ul

Data access pattern model

Models of Abstraction needed to have a systematic way to reason about the
complex FPGA-design space



| University

=7 of Glasgow

Performance Estimate

Dependence On Memory Execution Model

Activity

Kernel Pipeline
Execution

Device-DRAM

“
Device

Host

>
Device-DRAM

E

— '* Form A

_'—> F-Jn'nB_...--—"'-—-._______

—— =P [fmc] — . e,

R A == ~

./ / \ | I\ \
" i g I ___4"-"' \

| (] N

) 4 \ \
J----f -
— =l ’,£_"."_‘I\

— - ] |

The manner in which the FPGA memory-hierarchy is accessed across the
execution of an application has a huge impact on performance
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ngmversuy Pre-requisite: Models Of Abstraction

Glasgow

Platform model

Memory hierarchy model
Execution model
Design-space model
Memory execution model

O Ul U

Data access pattern model

Models of Abstraction needed to have a systematic way to reason about the
complex FPGA-design space



o m

il University

<+ of Glasgow Data Access Pattern

Platform model

Memory hierarchy model
Execution model
Design-space model
Memory execution model

O Ul U

Data access pattern model
— Contiguous access
—  (Fixed) Strided access

The data-access pattern has significant impact on performance of memory-bound
applications



University

of Glasgow

e Resource-Utilization Estimates
— ALUTSs, REGs, DSPs

e Performance Estimates

— Memory-bound or compute-bound?

e Memory-bound: The sustained
memory bandwidth

e Compute-bound: FPGA pipeline
throughput

Two Types of Estimates

TyTra
Manage-IR

Parse:
- Memory objects
- Stream objects

Resource
Estimator for
Memories and
Streams

Y

Accumulate:
Resource Estimates
of Memories and Streams

Y

TyTra

Compute-IR

Recursively Parse Functions:

- SSA compute instructions

- Child function call instructions
- Local offset streams

- Local counters

Resource
Estimator for
instructions,
offset streams,
and counters

Y

—>

Recursively Accumulate:

Resource Estimates of

instructions, child functions

and locals for each function
for each function

Y

Analyze:
Parsed IR and determine

Throughput
Estimator

>

Model

configuration
Estimate:
Throughput based on
configuration type

Both estimates needed to allow compiler to choose the best design variant.




University Resource Utilization

of Glasgow The Approach

e Estimate cost of primitive instructions

— Instructions should be cost-able across valid data types

e Accumulate costs based on parallelism configuration

— which is expressed by nesting of functions of types par, pipe, seq



s University Cost Model

= of Glasgow Resource Estimates

50

#-div-ALUTs [x100]
45

40 - - Poly. (div-ALUTs [x100])

35

30 -

25 .

. x*43.7x-10.6 |
20 —

ALUTs
\

15

10 _ -

0 10 20 30 40 50 60 70

Bit-width

w
Light-weight cost expressions associated with every legal SSA instruction in the”
TyTra-IR, e.g. integer division



| University Cost Model

= of Glasgow Resource Estimates

80 | | | 9

20 H =e-mul-ALUTs 8

60 |1 =#mul-DSP elements 7

6
0 [ a0 ] b,
— e e —— — | 5 U
v 40 - o
> ¥
- 30 - (oW
< & /ﬂ 3 0V
20 - A [ e 2 a

[T~
10 - ye e f/ 1
0 T T T . T T T . T T l- . T T T T T T T T T T T T T T n
0 10 20 30 40 50 60 70
Bit-width

€

Light-weight cost expressions associated with every legal SSA instruction in the
TyTra-IR, e.g. integer multiplication



University

-
Lvia veriTas viTa

of Glasgow

Performance Estimate

e Effective Work-Instance Throughput (EWIT)

Work-Instance = Executing the kernel over the entire index-space

e Key Determinants

Memory execution model

Sustained memory bandwidth for the target architecture and design-
variant

Data-access pattern

Design configuration of the FPGA
Operating frequency of the FPGA
Compute-bound or 10-bound?

The performance estimate requires design to be classified based on the

abstractions we developed earlier



15| University

< of Glasgow Performance Estimates
i The Expressions

]
EWUT, = — - = - ' : _ - - - -
4 Neg-Nwpr | .m‘\ff Kpp | ma.r| Ngs - Nwpr Ngs-Nwpr-Nro-Nj }
Hpp-pH Gpp-pc Fp Gprppc Fp-Knrp-Dv '
EWUT !
| ; B — NGS‘NW'PT _|_ Noff _|_ JKPD + ma I'( f‘w‘rci_b--f'w'rr['p-r f\-‘rgs-ﬁ'r[.lg.fg-rT-ﬂ'rT(j)-f\-rI }
Nwu-Hpp pH GpBpc Fp o Gpp'pa ° Fp-KnL-Dy
EWUT, !
L0 T Ngs-Nwpr 4 Nogs 4 Kpp 4 Ncs-Nt,-i.fpr-f\"jrc:)-NI
Nwu-Hpp-pH GpB-pc Fp Fp-KnL-Dv




#ta| University

of Glasgow Parameters that Make up the
Expression

Parameter| Key Short Description Evaluation Method
Dependence .
Hpp Node architecture The host-device peak bandwidth ‘ Architecture description fed to compiler
(typically PCI Express).
PH | Node architecture Scaling factor, host-device bandwidth L Experiments with different data-patterns
& on the target node.
design-variant
Gpp Node architecture The device DRAM peak bandwidth. Architecture description fed to compiler
P H Device architec- Scaling factor, host-device bandwidth .Ir‘:Jle'J iments with different L|;L|si—|!i|l1l-|'|:].'-:
ture & on the target node,
design-variant
Nesg Program Global-size of work-items in Compiler parse of IR
NDRange
[ NwpT [ Program Words per tuple per work-item [ Compiler parse of IR
Nnbpn Program Repetition of kernel over NDRange Compiler parse of 1Ih
[ ‘\-“.ff [ Program Maximum offset In a stream [ '['H]l][‘rihw' parse of IR
Kpp Program & FPipeline depth of kernel Compiler parse of 1R

design-variant

Fn Program & Device's operating frequency Compiler costing of IR
design-variant

Nro Program & Cycles per instruction Compiler parse of TR
design-variant

Ny Program & [nstructions per PE Compiler parse of IR
design-variant
Ane 1 Program & Mumber of parallel kernel lanes [ Compiler parse of 1
design-variant

Dy Program & Degree of vectorization per lane ( IH]I_]l'li_]I'I_' parse of IR

The variables the make up the expression for estimating performance
(throughput) are either directly available from IR, or require an empirical model



.Ta| University Effect of Access Pattern with

2 of Glasgow Different Array Sizes

7.0
. 6.1 _‘5_2 6.2 6.3
a 6.0 - 5.8
ﬁ ‘o P ——Contiguous B
< / -#-Strided
2
3 4.0 41
t .
c
Q 3.0
8 {24
£ 20
B 1.7
3 1.0 |+
v

0.3
0.0 L L} L3 |
0.04 0.07 007 0,07 0.07 0.07 0.07
0 1000 2000 3000 4000 5000 6000
Global-Size-0 / Stride (for strided access)

An illustration showing impact of data-access pattern on an sdaccel programmed
Alpha-Data FPGA board with Virtex7 device



Observations
and Results
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> of Glasgow Performance Estimates

Accuracy

Kernel ALUT| REG | BRAM| DSP | CPWI
Hotspot (Rodinia) |_Esumated 30] 1305 | 328K | 12 2623K
3P Actual 708 1363 | 327K | 12 762.1K
% error 4 4.2 0.3 0 0.07
. | Estimated 408 1496 | 0 76 111
LavaMD (Rodimiay—zemy 385 1557 | 0 73 115
% error 6 3.9 0 13 3.4
SOR Estimated 328 334 3418 | 0 200
Actual 334 375 5400 | 0 308
% error 1.1 7.1 0.3 0 5.2

Preliminary results show estimated vs actual values are quite close.
Frequency estimate is still a tricky (hence Clocks Per Work-Instance)
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(Mormalized)

Runtime

J bk

Unuversity

N C]GC{T{\‘TT

‘I | cpu

U fpga-max.)

| fpEa-tyvira

Does the TyTra approach

24 48 i 144 192
im, jm, km
T |0cpn
L:‘ fpga-max.]
é 1 & | fpga-tyvtra
Z
= 1t m = : a
7
¥ 05
24 48 a6 144 192
i, jm. km

Maxeler APl and Drivers

i PCle

CPUI/O

Kernel Pipeline

FPGA | orami/o



University

L) of Glasgow How Fast Is The Cost Model

Time taken to generate estimate (sec)

80
70
70 -
60 -
50 -
40 -
30 -
20 -
10 - 200x faster
0.3
0 - . .
Xilinx SDAccel tool TyTra

o874

The requirement of the cost-model to be light-weight is very important if we
want to evaluate many design-variants



L}%‘;ﬁg&% Design-space Exploration?

350 180

200 A - 160
rd

Computation wall / L 140

250 /I / -
Communication wall / 4//// //.

/

|

Thousands

200 (Host-streams) y v - 100
.

Communication wall |} so
(DRAM-streams)

\\+ j %

Percentage Utilization of Resource
EWGT (Work-group-Executions / second)

100
; 40
50 .
S ; 20
.. i = g
0 — o : 0
0 2 4 6 8 10 12 14 16 18
Number of lanes of kernel's execution pipeline
w==fii=FRegs Aluts =se=BlockRAM — =sbé=DSPs GMem-BW s Host-BYY s EWGT

D
Estimates for multiple variants allows us to converge on the best option, and can
also give optimization hint back to the compiler/ programmer
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Umvers1ty On-going Challenges

% of Glasgow Memory Bandwidth Estimates

e Estimating the memory bandwidth for:
— a particular application
— configured as a particular design-variant
— being compiled for a particular HPC target platform

e |f estimate show application will be memory-bound, then:

— Can we optimize memory access to get better overall performance?

e We are currently working on a memory-bandwidth benchmark
for FPGAs

Estimating the correct sustained memory-bandwidth is an important challenge
(among others) that we are currently working on
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L}%‘;ﬁg&% Limitations = Future Work

e Experiment with simple kernels

e Cost-model currently for integers only

e (Lack of) Re-usable, user-friendly and publicly available benchmarks

e Non-optimized number representations

e No automated integration of generated HDL code with HLS tools
— Manually we have integrated our generated code with Maxeler HLS

e Estimating resources for memory controllers/base platform
— Also, more accurate estimates of frequency

Stay tuned...



Auto-tuning scientific computing

Py

s| University for FPGAs - A fresh approach to

of Glasgow |
cost-modelling

1. A functional language paradigm based TyTra Framework
— Type transformations, variants, IR and need for a cost model

2. Making a light-weight cost-model

—  Models of Abstractions, the cost model for resources and performance, the
key variables

3. Experimental results and observations

—  Accuracy, exploration, potential for improvement
—  Limitations and the way forward

Towards an optimizing compiler for running scientific code on FPGAs
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