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Motivation 
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FPGAs for High Performance 

Computing (HPC)? 

• FPGAs now beginning to be used  in mainstream computing 
– big-data and big-compute (HPC) 

 

• Can provide better FLOPS/Watt for some types of applications 

 

• Difficult to tune even with today’s HLS tools like OpenCL, Maxeler, etc 

– E.g. 3 days vs 3 weeks 

 

• A still higher-level approach is needed 
– automatic architectural exploration of the FPGA design-space 

– make FPGAs more accessible to scientists/HPC users 

 

• The argument can be generalized to heterogeneous computing targets 

Lots of promise, encouraging recent  developments, but  miles to go st ill… 
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Today’s high-level language is 

tomorrow’s compiler target 



Why are we working on an FPGA cost-

model? 

• Our proposed TyTra compiler flow requires evaluation of 
multiple design-variants, in order to converge on the best one. 

 

• It requires a light-weight, reasonably accurate cost-model. 

 

 

A light -weight  cost -model is the linchpin of our proposed FPGA opt imizing 

compiler f low 
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OUTLINE OF TALK 



Towards an optimizing compiler 

for running scientific code on 

FPGAs 
1. The TyTra Framework 

– Compiler flow 

– The Intermediate Representation (IR) 

– Need for a cost-model 

 

2. Developing a Cost-Model 

– Models of abstraction 

– Cost-model for resource-utilization  and performance 

 

3. Observations 

– Results: design-space exploration potential, accuracy of cost-model, potential for 
improved performance  

– Limitations 

– The way forward 

An auto-tuning programming approach, for scient if ic comput ing, requir ing a 

fresh approach to cost -modelling 
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THE TYTRA FRAMEWORK 



Blue Sky Target 

Cost Model 

Legacy 
Scientific Code 

Heterogeneous 
HPC Target 

Optimized HPC 

solution! 

M ake HPC on “ exot ic”  architectures more accessible to scient ist s 
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The Cunning Plan… 
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The Cunning Plan 

1. Use the functional programming paradigm  
– type-transformations to create design-variants 

 

2. Have an Intermediate Language that can: 
– express the design-space 

– be costed directly and quickly 

 

3. Create a light-weight cost-model that can estimate: 
– performance  

– resource-utilization 

 

 

 

 

 

Exploit  t he “ elegance”  of funct ional abst ract ion to generate equivalent  design 

variants, then lower it  t o an IR that  can be costed  
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Key contributions 

Following on from the cunning plan 

1. Type transformations for 
generating program variants 

 

2. A new(ish) intermediate 
language based on LLVM, 
and  

 

3. A light-weight cost-model 

 

Generat ing variants, and connect ing them to a cost -model ( and generator)  via an 

appropriate Intermediate Representat ion 
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The TyTra Flow 

What’s keeping us busy these days 

 
Refactored 

Fortran Code 

Legacy Fortran 

Scientific Code 

this work 

12 



Key contributions 
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3. A light-weight cost-model 

 

Generat ing variants, and connect ing them to a cost -model ( and code-generator)  
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Type Transformations 

Why Functional Programming 

• Describe what something is, not what to do 
– not imperative 

– no “side-effects” 

 

• High-level types that describe functions as well as variables 

 

• Transformation of vector-types can be done in a provably 
correct manner 

 

• Type-transformations translate to design-variants on the 
FPGA 

 A funct ional paradigm with high-level funct ions allows creat ion of design-variants 

that  are correct -by-const ruct ion. 
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Type Transformations 

Illustration 

Vector Types 

• typeA :Vect im   int            --1D integer vector sized im 

 

• typeB :Vect km   (Vect im int)  --transformed 2D data  

   

 

Program Variants 

• output = mappipe kernel_func input           --original program 

 

• inputTra = reshapeTo km input               --reshaping data 

 

• output = mappar (mappipe kernel_func) inputTra--new program 

Simple and provably correct  vector t ransformat ions in the funct ional paradigm 

enable generat ion of “ program-variants”  
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Type Transformations 

Illustration 

The program-variants from high-level t ransformat ion t ranslate into design-

variants on the FPGA 

16 



Key contributions 

1. Type transformations for generating program variants 

 

2. A new(ish) intermediate language based on LLVM, and  

 

3. A light-weight cost-model 

 

Generat ing variants, and connect ing them to a cost -model ( and generator)  via an 

appropriate Intermediate Representat ion 
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A New Intermediate Language 

baseline 

functionally 

equivalent 

variant 

Design-variants are lowered into an Intermediate-Representat ion, mak ing it  easier 

to est imate cost , performance, and then generate HDL code 

1
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A New Intermediate Language 
Expressing Configurations in the IR 

Nest ing funct ions of t ypes pipe,  par,  seq and comb in dif ferent  combinat ions 

enables expression of dif ferent  design configurat ions 
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Now that we have design 

variants… 

 

 

 

How do we know which variants are valid (fit on the FPGA)? 

 

How do we know which one performs the best? 
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DEVELOPING THE COST-

MODEL 



The Cost Model Use-Case 

A set  of standardized experiments for each new target  feeds empir ical data to the 

cost  model, and the rest  comes from the IR descript ion.  

2
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Pre-requisite: Models Of Abstraction 

1. Platform model 

2. Memory hierarchy model 

3. Execution model 

4. Design-space and cost-space model 

5. Memory execution model 

6. Data access pattern model 

 

M odels of Abst ract ion needed to have a systemat ic way to reason about  the 

complex  FPGA-design space 
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Platform And Memory Model 
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Design Space 

A way to look  at  the design-space for FPGA implementat ion. This st ill does not  

capture degrees of freedom 
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Performance Estimate 

Dependence On Memory Execution Model 

The manner in which the FPGA memory-hierarchy is accessed across the 

execut ion of an applicat ion has a huge impact  on performance 
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Data Access Pattern 

1. Platform model 

2. Memory hierarchy model 

3. Execution model 

4. Design-space model 

5. Memory execution model 

6. Data access pattern model 
– Contiguous access 

– (Fixed) Strided access 

 

The data-access pat tern has signif icant  impact  on performance of memory-bound 

applicat ions 
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Two Types of Estimates 

• Resource-Utilization Estimates 
– ALUTs, REGs, DSPs 

 

• Performance Estimates 
– Memory-bound or compute-bound? 

• Memory-bound: The sustained 
memory bandwidth 

• Compute-bound: FPGA pipeline 
throughput 

 

 

Both est imates needed to allow compiler to choose the best  design variant . 
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Resource Utilization 

The Approach 

• Estimate cost of primitive instructions 
– Instructions should be cost-able across valid data types 

 

• Accumulate costs based on parallelism configuration 
– which is expressed by nesting of functions of types par, pipe, seq 
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Cost Model 

Resource Estimates 

Light -weight  cost  expressions associated with every legal SSA inst ruct ion in the 

TyTra-IR, e.g. integer division 
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Cost Model 

Resource Estimates 

Light -weight  cost  expressions associated with every legal SSA inst ruct ion in the 

TyTra-IR, e.g. integer mult iplicat ion 
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Performance Estimate 

• Effective Work-Instance  Throughput (EWIT) 
– Work-Instance = Executing the kernel over the entire index-space 

 

• Key Determinants 
– Memory execution model  

– Sustained memory bandwidth for the target architecture and design-
variant 

– Data-access pattern 

– Design configuration of the FPGA 

– Operating frequency of the FPGA 

– Compute-bound or IO-bound? 

 

 The performance est imate requires design to be classif ied based on the 

abst ract ions we developed earlier  
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Performance Estimates  

The Expressions 



 

Parameters that Make up the 

Expression 

 

The variables the make up the expression for est imat ing performance 

( throughput )  are either direct ly available from IR, or require an empir ical model  
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Effect of Access Pattern with 

Different Array Sizes 

An illust rat ion showing impact  of data-access pat tern on an sdaccel programmed 

Alpha-Data FPGA board with Virtex7 device 
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Observations 
and Results 



 

Performance Estimates  

Accuracy 

Preliminary result s show est imated vs actual values are quite close.  

Frequency est imate is st ill a t r icky ( hence Clocks Per Work -Instance)  
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Does the TyTra approach  

work? 
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How Fast Is The Cost Model 
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Xilinx SDAccel tool TyTra

Time taken to generate estimate  (sec) 

200x faster 

The requirement  of the cost -model to be light -weight  is very important  if  we 

want  to evaluate many design-variants 

4
3
 



Design-space Exploration? 

Est imates for mult iple variants allows us to converge on the best  opt ion, and can 

also give opt imizat ion hint  back  to the compiler/ programmer  

4
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On-going Challenges 

Memory Bandwidth Estimates 

• Estimating the memory bandwidth for: 
– a particular application 

– configured as a particular design-variant 

– being compiled for a particular HPC target platform 

 

• If estimate show application will be memory-bound, then: 
– Can we optimize memory access to get better overall performance? 

 

• We are currently working on a memory-bandwidth benchmark 
for FPGAs 

 

Est imat ing the correct  sustained memory-bandwidth is an important  challenge 

( among others)  that  we are current ly work ing on 
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Limitations  Future Work 

• Experiment with simple kernels 

 

• Cost-model currently for integers only 

 

• (Lack of) Re-usable, user-friendly and publicly available benchmarks 

 

• Non-optimized number representations 

 

• No automated integration of generated HDL code with HLS tools  

– Manually we have integrated our generated code with Maxeler HLS 

 

• Estimating resources for memory controllers/base platform 

– Also, more accurate estimates of frequency 
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Stay tuned… 



Auto-tuning scientific computing 

for FPGAs - A fresh approach to 

cost-modelling 

 
1. A functional language paradigm based TyTra Framework 

– Type transformations, variants, IR and need for a cost model 

 

2. Making a light-weight cost-model 

– Models of Abstractions, the cost model for resources and performance, the 
key variables 

 

3. Experimental results and observations 

– Accuracy, exploration, potential for improvement 

– Limitations and the way forward 

Towards an opt imizing compiler for running scient if ic code on FPGAs 
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The woods are lovely, dark and deep,    
But I have promises to keep,    

And lines to code before I sleep,    
And lines to code before I sleep. 
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