
A Fast and Accurate Cost Model for FPGA

Design Space Exploration in HPC

Applications

S Waqar Nabi and Wim Vanderbauwhede

School of Computing Science,

University of Glasgow

23rd Reconfigurable Architectures Workshop

May 23-24, 2016

Chicago, Illinois, USA

Developing an optimizing compiler for running

scientific code on FPGAs

Motivation

1

FPGAs for High Performance

Computing (HPC)?

• FPGAs now beginning to be used in mainstream computing
– big-data and big-compute (HPC)

• Can provide better FLOPS/Watt for some types of applications

• Difficult to tune even with today’s HLS tools like OpenCL, Maxeler, etc

– E.g. 3 days vs 3 weeks

• A still higher-level approach is needed
– automatic architectural exploration of the FPGA design-space

– make FPGAs more accessible to scientists/HPC users

• The argument can be generalized to heterogeneous computing targets

Lots of promise, encouraging recent developments, but miles to go st ill…

2

FPGAs for High Performance

Computing (HPC)?

• FPGAs now beginning to be used in mainstream computing
– big-data and big-compute (HPC)

• Can provide better FLOPS/Watt for some types of applications

• Difficult to tune even with today’s HLS tools like OpenCL, Maxeler, etc

– E.g. 3 days vs 3 weeks

• A still higher-level approach is needed
– automatic architectural exploration of the FPGA design-space

– make FPGAs more accessible to scientists/HPC users

• The argument can be generalized to heterogeneous computing targets

Lots of promise, encouraging recent developments, but miles to go st ill…

3

Today’s high-level language is

tomorrow’s compiler target

Why are we working on an FPGA cost-

model?

• Our proposed TyTra compiler flow requires evaluation of
multiple design-variants, in order to converge on the best one.

• It requires a light-weight, reasonably accurate cost-model.

A light -weight cost -model is the linchpin of our proposed FPGA opt imizing

compiler f low

4

OUTLINE OF TALK

Towards an optimizing compiler

for running scientific code on

FPGAs
1. The TyTra Framework

– Compiler flow

– The Intermediate Representation (IR)

– Need for a cost-model

2. Developing a Cost-Model

– Models of abstraction

– Cost-model for resource-utilization and performance

3. Observations

– Results: design-space exploration potential, accuracy of cost-model, potential for
improved performance

– Limitations

– The way forward

An auto-tuning programming approach, for scient if ic comput ing, requir ing a

fresh approach to cost -modelling

6

THE TYTRA FRAMEWORK

Blue Sky Target

Cost Model

Legacy
Scientific Code

Heterogeneous
HPC Target

Optimized HPC

solution!

M ake HPC on “ exot ic” architectures more accessible to scient ist s

8

The Cunning Plan…

9

The Cunning Plan

1. Use the functional programming paradigm
– type-transformations to create design-variants

2. Have an Intermediate Language that can:
– express the design-space

– be costed directly and quickly

3. Create a light-weight cost-model that can estimate:
– performance

– resource-utilization

Exploit t he “ elegance” of funct ional abst ract ion to generate equivalent design

variants, then lower it t o an IR that can be costed

10

Key contributions

Following on from the cunning plan

1. Type transformations for
generating program variants

2. A new(ish) intermediate
language based on LLVM,
and

3. A light-weight cost-model

Generat ing variants, and connect ing them to a cost -model (and generator) via an

appropriate Intermediate Representat ion

11

The TyTra Flow

What’s keeping us busy these days

Refactored

Fortran Code

Legacy Fortran

Scientific Code

this work

12

Key contributions

1. Type transformations for generating program variants

2. A new(ish) intermediate language based on LLVM, and

3. A light-weight cost-model

Generat ing variants, and connect ing them to a cost -model (and code-generator)

via an appropriate Intermediate Representat ion

13

Type Transformations

Why Functional Programming

• Describe what something is, not what to do
– not imperative

– no “side-effects”

• High-level types that describe functions as well as variables

• Transformation of vector-types can be done in a provably
correct manner

• Type-transformations translate to design-variants on the
FPGA

 A funct ional paradigm with high-level funct ions allows creat ion of design-variants

that are correct -by-const ruct ion.

14

Type Transformations

Illustration

Vector Types

• typeA :Vect im int --1D integer vector sized im

• typeB :Vect km (Vect im int) --transformed 2D data

Program Variants

• output = mappipe kernel_func input --original program

• inputTra = reshapeTo km input --reshaping data

• output = mappar (mappipe kernel_func) inputTra--new program

Simple and provably correct vector t ransformat ions in the funct ional paradigm

enable generat ion of “ program-variants”

15

Type Transformations

Illustration

The program-variants from high-level t ransformat ion t ranslate into design-

variants on the FPGA

16

Key contributions

1. Type transformations for generating program variants

2. A new(ish) intermediate language based on LLVM, and

3. A light-weight cost-model

Generat ing variants, and connect ing them to a cost -model (and generator) via an

appropriate Intermediate Representat ion

17

A New Intermediate Language

baseline

functionally

equivalent

variant

Design-variants are lowered into an Intermediate-Representat ion, mak ing it easier

to est imate cost , performance, and then generate HDL code

1
8

A New Intermediate Language
Expressing Configurations in the IR

Nest ing funct ions of t ypes pipe, par, seq and comb in dif ferent combinat ions

enables expression of dif ferent design configurat ions

19

Now that we have design

variants…

How do we know which variants are valid (fit on the FPGA)?

How do we know which one performs the best?

20

DEVELOPING THE COST-

MODEL

The Cost Model Use-Case

A set of standardized experiments for each new target feeds empir ical data to the

cost model, and the rest comes from the IR descript ion.

2
2

Pre-requisite: Models Of Abstraction

1. Platform model

2. Memory hierarchy model

3. Execution model

4. Design-space and cost-space model

5. Memory execution model

6. Data access pattern model

M odels of Abst ract ion needed to have a systemat ic way to reason about the

complex FPGA-design space

23

Pre-requisite: Models Of Abstraction

1. Platform model

2. Memory hierarchy model

3. Execution model

4. Design-space model

5. Memory execution model

6. Data access pattern model

(More or less) based

on OpenCL standard

M odels of Abst ract ion needed to have a systemat ic way to reason about the

complex FPGA-design space

24

Platform And Memory Model

25

Pre-requisite: Models Of Abstraction

1. Platform model

2. Memory hierarchy model

3. Execution model

4. Design-space model

5. Memory execution model

6. Data access pattern model

M odels of Abst ract ion needed to have a systemat ic way to reason about the

complex FPGA-design space

26

Design Space

A way to look at the design-space for FPGA implementat ion. This st ill does not

capture degrees of freedom

27

Pre-requisite: Models Of Abstraction

1. Platform model

2. Memory hierarchy model

3. Execution model

4. Design-space model

5. Memory execution model

6. Data access pattern model

M odels of Abst ract ion needed to have a systemat ic way to reason about the

complex FPGA-design space

28

Performance Estimate

Dependence On Memory Execution Model

The manner in which the FPGA memory-hierarchy is accessed across the

execut ion of an applicat ion has a huge impact on performance

29

Pre-requisite: Models Of Abstraction

1. Platform model

2. Memory hierarchy model

3. Execution model

4. Design-space model

5. Memory execution model

6. Data access pattern model

M odels of Abst ract ion needed to have a systemat ic way to reason about the

complex FPGA-design space

30

Data Access Pattern

1. Platform model

2. Memory hierarchy model

3. Execution model

4. Design-space model

5. Memory execution model

6. Data access pattern model
– Contiguous access

– (Fixed) Strided access

The data-access pat tern has signif icant impact on performance of memory-bound

applicat ions

31

Two Types of Estimates

• Resource-Utilization Estimates
– ALUTs, REGs, DSPs

• Performance Estimates
– Memory-bound or compute-bound?

• Memory-bound: The sustained
memory bandwidth

• Compute-bound: FPGA pipeline
throughput

Both est imates needed to allow compiler to choose the best design variant .

32

Resource Utilization

The Approach

• Estimate cost of primitive instructions
– Instructions should be cost-able across valid data types

• Accumulate costs based on parallelism configuration
– which is expressed by nesting of functions of types par, pipe, seq

33

Cost Model

Resource Estimates

Light -weight cost expressions associated with every legal SSA inst ruct ion in the

TyTra-IR, e.g. integer division

3
4

Cost Model

Resource Estimates

Light -weight cost expressions associated with every legal SSA inst ruct ion in the

TyTra-IR, e.g. integer mult iplicat ion

3
5

Performance Estimate

• Effective Work-Instance Throughput (EWIT)
– Work-Instance = Executing the kernel over the entire index-space

• Key Determinants
– Memory execution model

– Sustained memory bandwidth for the target architecture and design-
variant

– Data-access pattern

– Design configuration of the FPGA

– Operating frequency of the FPGA

– Compute-bound or IO-bound?

 The performance est imate requires design to be classif ied based on the

abst ract ions we developed earlier

36

Performance Estimates

The Expressions

Parameters that Make up the

Expression

The variables the make up the expression for est imat ing performance

(throughput) are either direct ly available from IR, or require an empir ical model

38

Effect of Access Pattern with

Different Array Sizes

An illust rat ion showing impact of data-access pat tern on an sdaccel programmed

Alpha-Data FPGA board with Virtex7 device

39

Observations
and Results

Performance Estimates

Accuracy

Preliminary result s show est imated vs actual values are quite close.

Frequency est imate is st ill a t r icky (hence Clocks Per Work -Instance)

41

Does the TyTra approach

work?

42

How Fast Is The Cost Model

70

0.3
0

10

20

30

40

50

60

70

80

Xilinx SDAccel tool TyTra

Time taken to generate estimate (sec)

200x faster

The requirement of the cost -model to be light -weight is very important if we

want to evaluate many design-variants

4
3

Design-space Exploration?

Est imates for mult iple variants allows us to converge on the best opt ion, and can

also give opt imizat ion hint back to the compiler/ programmer

4
4

On-going Challenges

Memory Bandwidth Estimates

• Estimating the memory bandwidth for:
– a particular application

– configured as a particular design-variant

– being compiled for a particular HPC target platform

• If estimate show application will be memory-bound, then:
– Can we optimize memory access to get better overall performance?

• We are currently working on a memory-bandwidth benchmark
for FPGAs

Est imat ing the correct sustained memory-bandwidth is an important challenge

(among others) that we are current ly work ing on

45

Limitations  Future Work

• Experiment with simple kernels

• Cost-model currently for integers only

• (Lack of) Re-usable, user-friendly and publicly available benchmarks

• Non-optimized number representations

• No automated integration of generated HDL code with HLS tools

– Manually we have integrated our generated code with Maxeler HLS

• Estimating resources for memory controllers/base platform

– Also, more accurate estimates of frequency

46

Stay tuned…

Auto-tuning scientific computing

for FPGAs - A fresh approach to

cost-modelling

1. A functional language paradigm based TyTra Framework

– Type transformations, variants, IR and need for a cost model

2. Making a light-weight cost-model

– Models of Abstractions, the cost model for resources and performance, the
key variables

3. Experimental results and observations

– Accuracy, exploration, potential for improvement

– Limitations and the way forward

Towards an opt imizing compiler for running scient if ic code on FPGAs

47

The woods are lovely, dark and deep,
But I have promises to keep,

And lines to code before I sleep,
And lines to code before I sleep.

48

Acknowledgement
We wish to acknowledge support

by EPSRC through grant EP/L00058X/1.

The woods are lovely, dark and deep,

But I have promises to keep,

And lines to code before I sleep,

And lines to code before I sleep.

syed.nabi@glasgow.ac.uk

http://dcs.gla.ac.uk/~waqar/

