= 9 4 A A 4dNRele

>

A Reconfigurable Fixed-Point
Architecture for Adaptive
Beamf()rming

DANIEL LLAMOCCA AND DANIEL ALOI

Electrical and Computer Engineering
Department,

Oakland University

May 23", 2016

OAKLAND
UNIVERSITY.

Ko
%

Outline

Motivation
Adaptive Beamformer

= Algorithm
= Architecture

Experimental Setup
Results

Conclusions

OAKLAND
UNIVERSITY.

ez

MOtivation @é e - - "d Wele

Adaptive beamformers are common in switched-beam Smart
Antennas that contain fixed beam patterns that are
switched on-demand. They can also be used in null steering.

UNIFORM CIRCULAR ARRAY UNIFORM LINEAR ARRAY

The adaptive nature of the beamformers ", ‘
makes them a suitable candidate
for reconfigurable implementation.

Beamformers are widely used in radar,
sonar, speech, and mobile/wireless

communications l\ OAKLAND

N2
S IWELCWRLOAOD
= 7

Adaptive Beamformer
Description:
= System that receives a vector of signals y,, from multiple antenna
elements.
= The Beamformer output is described by: z[n] = W} X y,,.
= We want to emphasize a signal from a desired Direction of

Arrival (DOA) and suppress undesired signals. This is
accomplished by adaptively adjusting the weights w1!.

This requires large amounts of data to be processed in parallel.
In addition, we need resource efficiency. Here, dedicated
fixed-point hardware implementations are desired.

We present a reconfigurable beamforming architecture
validated on a Programmable System-on-Chip.

We analyze trade-offs among resources, accuracy, and

hardware parameters. OAKLAND
UNIVERSITY.

N2
S IWELCWRLOAOD
= 7

Adaptive Beamformer

Frost’s Adaptive Algorithm

= y,,: column vector of M complex input samples at time n. M:
number of sensors. N: number of snapshots (collection of M
samples at time n).

= Wy,: column vector of M complex weights at time n (W;=w).

forn=1N
Z[n] =Wy Xy
Wny1 = We + P X (W, — pz*[n]yy)
end
P=1-ctcc?)yc,w, =cHcc?)y1c
= Constrained optimization ;Jroblem subject to C.w,, = c.
C: constraint matrix. c: column of constraining values.

= W, accentuates signals coming from some direction and/or
suppress jammers. Thus, C and c steer the beamformer in a
desired direction (i.e., switch to a desired beam pattern).

= This is a relatively simple yet numerically robust algorithm.
We steer the beamformer by updating the OAKLAND
constraints C and c. UNIVERSITY.

@g WEYL Wi A

Adaptive Beamformer-

Parameterized flxed-pomtArchltecture
= Complex data: Input Format: [B B-1]. Output format [BO BQ]
= P,w,: They steer the beamformer in a particular direction

yl[n] B,/ I_ > ™~
[B B —1] i Bo, /" *
yz[n] B/ \®_)
[BB - 1] g °%—z[n
: j J i g [BO BQ] il
yulnl B, ®-> i
[BB—1] Izr S| Bo 4/" —
Ey ADAPTIVE WEIGHT ADJUSTMENT § il
)
L >80, filn]_ S
N Bo + BO[;B 01 B0l BO, 2
start * _ 180 BQ] 2
NS 8o, F,In] =
: LG 1 feosal|| ©||H 2%
— > . - _ [BO BQ]
. . PMXMfol
5 —)I BO/ fuln] BO,
. [BO BQ] L [BO IBQ]
BQy —uz[n] ®, Em Ew | o
B0Bol g A . .;)Q)
N esired DOA
’I/ T NH/I/ N'—ll/ NHI specified by P and V_‘;COAKLAND
u M P WC; WGy« s s WCy UNIVERSITY.

Adaptive Beamformer

Components:
= 2M Complex Adders

= 2M Complex Multipliers: Each one
requires 4 multipliers and two

adders.

-

@ér A=l dNeloe

d
BO

//

By

a 7

<
BO+B

<
BO+B

7
iBO+B

:BO+B

Y \

y Y

 + /

\¢_-4/

BO+B+1[
~
Y

ac + bd

BO+B+1
7

bc —ad

= Complex Adder Tree: It requires 2 M-input pipelined adder trees.

RO) R() R@ RE R@

B 8 B B ’.VBi‘ Bl B
M
Y Y Y Y Y Y
+ /v + / +
e

BO=B+ log,(N) | RT

© I 1@ 16 14)

5) 1(6)

Y Y Y

B|: B
Y

]

/

\ /

Q\|Z-1-i:|/\|_v__-l-i:|

5

=

e

+ /
BC
Y

\

OAKLAND
UNIVERSITY.

Adaptive Beamformer

Components:

= Complex Constant Matrix by Column Product:
Puxm X fuxi, [= Wy —

constant. We use DlStrl

j PMxM! j¢ M{i;
jf 1 j

Py X f
f, = 7 Complex

Inner Product (DA)

7’;7 TL¥ 7";;:

v Y Y
Py X f

> Complex

: | Inner Product (DA)

2 P, P
v \
Py X f
Complex
Inner Product (DA)

—

—>
BOy
7> Vy

—

COMPLEX MATRIX BY COLUMN
MULTIPLIER

z*[n]yn
M inner products: For a artlcular Direction of Arrival, P is

ez

é/\ L
<

BO; My, L
- vy
ff{‘ E;; PR,y
\ Y \
Ry Re(P} x Re(f)
fRz: .| Inner Product (DA) M
Ry~ >
PI,; PI,, ... PIiy _—| |——> R,
A ¥ o
f, > Im{P,} x Im{f}
. . | Inner Product (DA) (—| i
fl,,- >
PI;; PI, ... PI;y
¥ ¥ \
| (P} x Re{f}
~.” | Inner Product (DA) >
PRi; PR, - PRiym + ILg
Vo ¥ Spas
| Re{P}x Im{f}
. | Inner Product (DA) [—>| |
: [} \Y
N > |

2%

COMPLEX INNER PRODUCT

et | ol [P— [— ' & B &)

tedArlthmetzc to avoid multipliers

Latency:
[log, BO]
logz(M/L)] + 3

cycles

Inner Product
(DA): Fully

. pipelined
Distributed
Arithmetic
hardware than
can process new
data every cycle.

OAKLAND
UNIVERSITY.

. € el 4 N e I & |

Adaptive Beamformer- *

Operation:
= Dataflow controlled by an FSM.

* E captures input snapshots at time n: y,. The complex weights
w,, are available at this moment.

= The output z[n] is generated after 2 + [log, M| cycles

= Once z[n] is ready, the next set of coefficients w,,,, is generated
after [log, BO| + [log,(M/L)| + 5 cycles

ST I T O I ¢ f T

A ————

(O —] S

W e X
= i< ———— OAKLAND

2 + [log, M| = + [log, BO] + [log, M/L]' UNIVERSITY.

AN="

Experimental Setup

Generation of input beamforming signals:
= The snapshots y, are retrieved from an array of sensors.
= For this experiment, we use a Linear Array with M=6 sensors
where N=500 snapshots are generated.
= yu[n] = sy [n] + i [n] + 1y [n]: Samples at each sensor
sm[n]: Signal(s) of interest, i,,[n]: Interference (jammer), 1, [n]:
noise.
sy [n] = s[n]e™’ fe.Xm inIn] = i[n]e‘j%"zm, where k. X, depend
on the angle of arrival of each signal and the array geometry.
= Example: The following signals have different angle of arrivals

(AOIs) and amplitudes, and appear at different time intervals.
s4|n]: AOI: 309 sg[n]: AOI: -109 s-[n]: AOIs: 0 55159 20 °°

fleeotiie oo —

05 --------

: OAKLAND
UNIVERSITY.

100 170 240 310 380 450 500

Experimental Setup

Matrix C and constant c: They control the beam pattern of
the antenna array. In our experiment, we consider two Scenarios,
each with different AOI (signals from previous figure).

a (@) = [elk*1 elk*2 | elkXM], |y = 0.01 (step size)
TABLE I. SCENARIOS CONSIDERED IN OUR EXPERIMENTAL SETUP. FOR BOTH
SCENARIOS, C = [a”(30°) a'"(—10°) a®(0°) a''(20°)]!

SCENARIO A SCENARIO B
SOI (s[n]) sa[n]. @go; = 30° sg[n], @gor = —10°
Jammer (i[n]) sg[n] + s¢[n] Sa[n] + se¢[n]
c [1000]" [0100]"

Hardware Parameters:
= B=8, M=6, N=500, NH=16 (bits per coefficient).
= Five different fixed-point output formats are selected:
[BO BQJ = [32 30], [24 22], [20 18], [16 14], [12 10]

Number of integer bits? Depend on the experimental Ak AND
values. We can saturate if overflow occurs. UNIVERSITY.

Experimental Setup - ""

Hardware validation:

= The Frost Beamformer was included as
a custom peripheral in an embedded

system inside a Programmable SoC cro [

Zyng-7000) in a XC702 Dev. Board.

= Data is streamed and retrieved viaan | ™
AXI4-Full Interface.

g
<«<—>» ARM |
‘ AXI Interconnect ‘

PL

Accuracy Assessment (PSNR)

= Complex output samples z[n], we compare the power |z[n]|*:
fixed-point hardware results vs software routine with double
floating point precision (MATLAB®). Two tests performed:

= Test 1: FPGA and software (MATLAB) uses the quantized input
samples (B = 8). This test assesses the quantization error
incurred by the fixed-point architecture

= Test 2: Only the FPGA uses the quantized input samples (B = 8)
This test assesses the effect of both input quantization and

fixed-point architecture on accuracy. OAKLAND
UNIVERSITY.

ez

a/\gr T A - - ' & B &)

Experimental Setup

Hardware validation:

= AXI Peripheral: It includes the Frost Beamformer and a 32-bit
AXlI4-Full Slave Interface (FIFOs, and control logic).

= For M=6, B=8, a snapshot requires 48 x2 bits (three 32-bit
words). As for the output, for BO=16, 12 no MUX is needed.

S AXI AWID =~ S_AXI_ARID

S_AXI_AWADDR 6, 6, S_AXI_ARADDR
S_AXIAWLEN 8 _ 8, S_AXI_ARLEN
S_AXI_AWSIZE 3, 3 S_AXI_ARSIZE
- rilyr,|lyrslyr h
S_AXI_AWBURST), | yr1lyr,lyrslyr, BO = 32,24, 20 > MUX needed | |« 2 SZAXL_ARBURST
Yrslyrelyiglyis =7
S_AXI_AWVALID _ _ e HE IS et BO = 16, 12 - no MUX needed S_AXI_ARVALID
> yizlyislyislyie ! <
_S_AXI_AWREADY M=6 B=8 BO S_AXI_ARREADY _
h iFIFO 512x32 y y OFIFO 512x32 ~
FWFT mod FWFT mod
S AXLWDATA 32| |] mODeO 32, 32,0 yrE50] 32 o mODeO 32, S_AXI_RDATA _
> > 7)/~ 7 >
S AXLWSTRB 4/ | [>[wren rden 32, [| FROST B2sli| |wren rden[< S_AXI_RID_
7> - 48 _BEAMFORMERYI 77 - >
S_AXILWLAST _~ 2 o Pl 5 B 5, S_AXI_RRESP _
S_AXI_WVALID > 35 4 v > Gt E v > 35 4 S_AXI_RLAST _
_S_AXI_WREADY 3 S_AXI_RVALID
_ 1 S_AXI_RREADY
uampty\(E <
_S_AXI_BID _ 1 FsMm
S_AXI_BRESP 2 ulll — <
~ N oempty
_ S _AXI_BVALID ~ orden
FSM

~'S_AXI_BREADY R
S_AXI_ACLK F Ao ¥ CLKFX=S_AXI_ACLK OAKLAND

AXI signals AXI FROST BEAMFORMER UNIVERSITY.

o gl Dot [— [4 B & |

Results

Resources

= The table shows resources (6-input LUTs, registers, and
DSP48s) for the given design parameters: M=6, B=8, NH=16.

= Resource consumption reasonable (<60% of the Zynq XC7020):
fully parallel architecture requiring many multipliers.

|[BO BQ] DSP48 % FF % LUT %
[12 10] 50 23 12231 12 11584 22
[16 14] 50 2 16167 15 15673 30
[20 18] 50 23 20585 19 20477 38
[24 22] 50 23 25411 24 24334 46
[32 30] 100 46 33808 32 32613 61

Execution Time (performance bounds)
= The hardware IP can process N snapshots in:
([log, BO| + [log,(M/L)] + [log, M| + 7) X N cycles
= For M=L=6, N=500, and for a frequency of 100 MHz:

= BO = 12, 16: Execution time: 70 us. Throughput: 7.14x10°
processed snapshots per second.

= BO = 32,24,20: Execution time: 75 us. OAKLAND
Throughput: 6.66x10° processed snapshots per second _"NYERSITY

N 4= dNelo)

Results P> TSt

Accuracy

= We show |z[n]|* (power (dB) of the output signal) for N=500
snaﬁshots. This is data retrieved from the fixed-point hardware
with [BO BQ] = [16 14]. Note how the Frost’s beamformer is
steered towards the desired directions.

= Scenario A (left): We steer the Beamformer towards 30 °
= Scenario B (right)): We steer the beamformer towards -10 °

= Note that the jammers are not present (there is no gain in the
interval where the SOl is present).

-) f’ower (dB'))) o Power (dB)
z[n] |zin]
B T I A
sl =30° | P =-10°

p =001 =001

) i i i : 4 . 4 : 4 A 4
100 200 300 400 450 500 0 100 170200 300 400 500 Oﬁ%ﬁ%},ﬁ?

n n

Results

Accuracy (PSNR):

= Test 1: High accuracy values (> 70 dB) for formats larger than
[16 14], — fixed-point architecture is robust.

= Test 2: Only the FPGA uses the quantized input samples.
Accuracy is decent (> 60 dB) for formats larger than [16 14].

= Increasing fractional bits from 14 to 30 only marginally

R

o - [,

e bt S T e

increases accuracy. However, accuracy drops for the format [12

10/ (~50dB).
SCENARIO A SCENARIO B
Test 1 Test 2 Test 1 Test 2
[12 10] 53.1077 52.8447 54.4502 54.3013
o | [16 14] 72.2134 64.4908 74.5182 65.3317
2 [20 18] 73.0448 64.5916 80.2639 65.6460
5, [24 22] 73.0650 64.5922 80.2631 65.6429
[32 30] 73.0671 64.5924 80.2649 65.6429

= For our experiment, we found the fixed-point output format [16
14/ to be optimal: a larger format increases resource usage with
a negligible improvement in accuracy, and a smaller
format results in a large drop in accuracy.

OAKLAND
UNIVERSITY.

Conclusions

Successfully validated a fixed-point Beamforming hardware
that exhibits high throughput and reasonable resource
requirements.

Accuracy results suggest that Ifixed-point results are close to
an implementation with double precision. Also, we
experimentally verified that the Frost algorithm mitigates
numerical errors: high PSNR values are obtained for small
fixed-point formats.

A drawback of fixed-point architecture is the number of
integer bits: we can saturate, but the optimal number of
integer bits depend on the dataset.

Currently working on a self-reconfigurable version for a large
set of hardware configurations and other array geometries.
The goal is to implement a smart antenna that adapts to

different beam patterns on-demand. AR LD

