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Motivation
 Adaptive beamformers are common in switched-beam Smart 

Antennas that contain fixed beam patterns that are 
switched on-demand. They can also be used in null steering.

 The adaptive nature of the beamformers
makes them a suitable candidate
for reconfigurable implementation.

 Beamformers are widely used in radar,
sonar, speech, and mobile/wireless
communications
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Adaptive Beamformer
 Description:

 System that receives a vector of signals  𝑦𝑛 from multiple antenna 
elements. 

 The Beamformer output is described by: 𝑧 𝑛 = 𝑤𝑛
𝐻 ×  𝑦𝑛.

 We want to emphasize a signal from a desired Direction of 
Arrival (DOA) and suppress undesired signals. This is 
accomplished by adaptively adjusting the weights 𝑤𝑛

𝐻.

 This requires large amounts of data to be processed in parallel. 
In addition, we need resource efficiency. Here, dedicated 
fixed-point hardware implementations are desired.

 We present a reconfigurable beamforming architecture 
validated on a Programmable System-on-Chip.

 We analyze trade-offs among resources, accuracy, and 
hardware parameters.



Adaptive Beamformer
 Frost’s Adaptive Algorithm

  𝑦𝑛: column vector of M complex input samples at time n. M: 
number of sensors. N: number of snapshots (collection of M 
samples at time n).

 𝑤𝑛: column vector of M complex weights at time n (𝑤1=𝑤𝐶).

𝑓𝑜𝑟 𝑛 = 1:𝑁
𝑧 𝑛 = 𝑤𝑛

𝐻 ×  𝑦𝑛
𝑤𝑛+1 = 𝑤𝐶 + 𝑃 × 𝑤𝑛 − 𝜇𝑧∗[𝑛]  𝑦𝑛

𝑒𝑛𝑑
𝑃 = 𝐼 − 𝐶𝐻 𝐶𝐶𝐻 −1𝐶, 𝑤𝐶 = 𝐶𝐻 𝐶𝐶𝐻 −1𝑐

 Constrained optimization problem subject to 𝐶.𝑤𝑛 = 𝑐.
C: constraint matrix. c: column of constraining values. 

 𝑤𝑛 accentuates signals coming from some direction and/or 
suppress jammers. Thus, C and c steer the beamformer in a 
desired direction (i.e., switch to a desired beam pattern). 

 This is a relatively simple yet numerically robust algorithm. 
We steer the beamformer by updating the
constraints C and c.



Adaptive Beamformer
 Parameterized fixed-point Architecture

 Complex data: Input Format: [B B-1]. Output format [BO BQ]
 𝑃,𝑤𝐶: They steer the beamformer in a particular direction
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Adaptive Beamformer
 Components:

 2M Complex Adders
 2M Complex Multipliers: Each one 

requires 4 multipliers and two 
adders. 

 Complex Adder Tree: It requires 2 M-input pipelined adder trees.
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Adaptive Beamformer
 Components:

 Complex Constant Matrix by Column Product:
𝑃𝑀×𝑀 × 𝑓𝑀×1, 𝑓 = 𝑤𝑛 − 𝜇𝑧∗ 𝑛  𝑦𝑛

M inner products: For a particular Direction of Arrival, P is 
constant. We use Distributed Arithmetic to avoid multipliers

Latency:
𝑙𝑜𝑔2 𝐵𝑂
+ 𝑙𝑜𝑔2  𝑀 𝐿 + 3

cycles

Inner Product 
(DA): Fully 
pipelined 
Distributed 
Arithmetic 
hardware than 
can process new  
data every cycle.
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Adaptive Beamformer
 Operation:

 Dataflow controlled by an FSM. 
 E captures input snapshots at time n:  𝑦𝑛. The complex weights 

𝑤𝑛 are available at this moment.
 The output 𝑧[𝑛] is generated after 2 + log2 𝑀 cycles
 Once 𝑧[𝑛] is ready, the next set of coefficients 𝑤𝑛+1 is generated 

after 𝑙𝑜𝑔2 𝐵𝑂 + 𝑙𝑜𝑔2  𝑀 𝐿 + 5 cycles

E

clk
... ...



Experimental Setup
 Generation of input beamforming signals:

 The snapshots  𝑦𝑛 are retrieved from an array of sensors.
 For this experiment, we use a Linear Array with M=6 sensors 

where N=500 snapshots are generated.
 𝑦𝑚[𝑛] = 𝑠𝑚[𝑛] + 𝑖𝑚[𝑛] + 𝑟𝑚[𝑛]: Samples at each sensor

𝑠𝑚[𝑛]: Signal(s) of interest, 𝑖𝑚[𝑛]: Interference (jammer), 𝑟𝑚[𝑛]: 
noise.

𝑠𝑚 𝑛 = 𝑠 𝑛 𝑒−𝑗𝑘.  𝑥𝑚 , 𝑖𝑚 𝑛 = 𝑖 𝑛 𝑒−𝑗𝑘.  𝑥𝑚, where 𝑘.  𝑥𝑚 depend 
on the angle of arrival of each signal and the array geometry.

 Example: The following signals have different angle of arrivals 
(AOIs) and amplitudes, and appear at different time intervals.
𝑠𝐴 𝑛 : AOI: 30, 𝑠𝐵 𝑛 : AOI: -10, 𝑠𝐶 𝑛 : AOIs: 0, 5,15, 20
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Experimental Setup
 Matrix C and constant c: They control the beam pattern of 

the antenna array. In our experiment, we consider two Scenarios, 
each with different AOI (signals from previous figure).

𝑎𝐻 ∅ = [𝑒𝑗𝑘.  𝑥1 𝑒𝑗𝑘.  𝑥2 …𝑒𝑗𝑘.  𝑥𝑀], m = 0.01 (step size)

 Hardware Parameters:
 B=8, M=6, N=500, NH=16 (bits per coefficient).
 Five different fixed-point output formats are selected:

[BO BQ] = [32 30], [24 22], [20 18], [16 14], [12 10]

Number of integer bits? Depend on the experimental
values. We can saturate if overflow occurs.



Experimental Setup
 Hardware validation:

 The Frost Beamformer was included as 
a custom peripheral in an embedded 
system inside a Programmable SoC
(Zynq-7000) in a XC702 Dev. Board.

 Data is streamed and retrieved via an 
AXI4-Full Interface.
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 Accuracy Assessment (PSNR)
 Complex output samples 𝑧[𝑛], we compare the power 𝑧[𝑛] 2:

fixed-point hardware results vs software routine with double 
floating point precision (MATLAB®). Two tests performed:

 Test 1: FPGA and software (MATLAB) uses the quantized input 
samples (𝐵 = 8). This test assesses the quantization error 
incurred by the fixed-point architecture

 Test 2: Only the FPGA uses the quantized input samples (𝐵 = 8) 
This test assesses the effect of both input quantization and 
fixed-point architecture on accuracy.



Experimental Setup
 Hardware validation:

 AXI Peripheral: It includes the Frost Beamformer and a 32-bit 
AXI4-Full Slave Interface (FIFOs, and control logic).

 For M=6, B=8, a snapshot requires 482 bits (three 32-bit 
words). As for the output, for BO=16, 12 no MUX is needed.
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Results
 Resources

 The table shows resources (6-input LUTs, registers, and 
DSP48s) for the given design parameters: M=6, B=8, NH=16.

 Resource consumption reasonable (<60% of the Zynq XC7020): 
fully parallel architecture requiring many multipliers.

 Execution Time (performance bounds)
 The hardware IP can process N snapshots in:

log2 𝐵𝑂 + log2  𝑀 𝐿 + log2 𝑀 + 7 × 𝑁 cycles
 For M=L=6, N=500, and for a frequency of 100 MHz:
 𝐵𝑂 = 12, 16: Execution time: 70 us. Throughput: 7.14106

processed snapshots per second.
 𝐵𝑂 = 32, 24, 20: Execution time: 75 us. 

Throughput: 6.66106 processed snapshots per second



Results
 Accuracy

 We show 𝑧[𝑛] 2 (power (dB) of the output signal) for N=500 
snapshots. This is data retrieved from the fixed-point hardware 
with [BO BQ] = [16 14]. Note how the Frost’s beamformer is 
steered towards the desired directions.

 Scenario A (left): We steer the Beamformer towards 30
 Scenario B (right)): We steer the beamformer towards -10 .
 Note that the jammers are not present (there is no gain in the 

interval where the SOI is present).



Results
 Accuracy (PSNR):

 Test 1:  High accuracy values (> 70 dB) for formats larger than 
[16 14],  fixed-point architecture is robust.

 Test 2: Only the FPGA uses the quantized input samples. 
Accuracy is decent (> 60 dB) for formats larger than [16 14].

 Increasing fractional bits from 14 to 30 only marginally 
increases accuracy. However, accuracy drops for the format [12 
10] (~50dB).

 For our experiment, we found the fixed-point output format [16 
14] to be optimal: a larger format increases resource usage with 
a negligible improvement in accuracy, and a smaller
format results in a large drop in accuracy.



Conclusions
 Successfully validated a fixed-point Beamforming hardware 

that exhibits high throughput and reasonable resource 
requirements.

 Accuracy results suggest that fixed-point results are close to 
an implementation with double precision. Also, we 
experimentally verified that the Frost algorithm mitigates 
numerical errors: high PSNR values are obtained for small 
fixed-point formats.

 A drawback of fixed-point architecture is the number of 
integer bits: we can saturate, but the optimal number of 
integer bits depend on the dataset. 

 Currently working on a self-reconfigurable version for a large 
set of hardware configurations and other array geometries. 
The goal is to implement a smart antenna that adapts to 
different beam patterns on-demand.


