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Applications involving Large Scale Sorting

Online social networks

Citation networks

Protein interactions

Air traffic network

WWW

Neural network
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CPU-FPGA Heterogeneous Platform
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• FPGA and CPU share the coherent cache system
• FPGA implements its own on-chip cache for fast data access
• FPGA can access data through high speed FPGA-cache interconnection
• FPGA has the same virtual address space with the host CPU application
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Problem Definition (1)
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• Input: unsorted N-key data array in external memory (32-bit keys)
• Memory system: a shared coherent cache system + external memory
• Output: sorted N-key data array in the external memory
• FPGA data access: FPGA on-chip cache with cache line granularity
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Problem Definition (2)
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• Performance Metric
– Throughput

• Defined as the number of data items sorted per second (Gbytes/s)
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Related Work (FPGA ‘11 D. Koch and J. Torresen)
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• Tree merge sorter
• FIFO-based merge sorter
• Insertion sorter
• FIFO & Tree
• Partial run-time reconfiguration
• 2 GB/s using on-chip memory Tree merge sorter

FIFO-based merge sorter Insertion sorter



Related Work (FPGA ‘15, Ren Chen)
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• Bitonic sorting network based
• “Folded” Clos network to perform inter-stage communication 
• Support continuous data streams to maximize throughput 
• Highly-optimized for memory and energy efficiency



Related Work

10

• Drawbacks of the state-of-art design on FPGA-only
– High throughput guaranteed only using on-chip memory
– Sorting can’t be fully pipelined and requires multiple passes for large input

size

• We propose a hybrid mapping on a
CPU-FPGA heterogeneous platform
– FPGA accelerates sorting each

sub-block
– CPU merges sub-blocks in serial
– Concurrent processing on FPGA and

CPU

Significant 
performance 
decline

FPGA-only sorting
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Sorting on any Platform: Memory?
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• Theorem [ ..80’s ]: To sort N-key sequence on any
hardware architecture using a single pass,

Ω(𝑁) on-chip memory is needed.

– Provides an upper bound for the size of input sequence that a FPGA
can sort using a single pass.

– In order to reduce external memory I/O operations, we propose a
hybrid mapping on a shared memory CPU-FPGA platform.



Hybrid Mapping on a CPU-FPGA Platform 
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• Divide N-key unsorted input data stream into sub-blocks, each contains
K keys

• Use FPGA sorting accelerator to sort each sub-block in a single pass
(sub-problem fits in on-chip memory)

• Use CPU to merge sub-blocks concurrently into a sorted sequence



Merge Sort Accelerator (MSA) (1)
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• Merge sort based – reduced hardware complexity
• Low data parallelism for merge sort tree at the root
• FIFO-based merger: 2-to-1 mergers in each stage, reuse input FIFOs
• Merge Sort Accelerator: pipelined FIFO-based merger
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Merge Sort Accelerator (MSA) (2)
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• Input: Stream of input data
• Output: Block of K keys in sorted order
• Sorts K-key data sequence in log𝐾 stages
• Overlaps two sorts of size K
• Throughput: One key/cycle
• Latency: 2 + 4 +⋯+ 𝐾 = 𝑂 2/012 = 𝑂(𝐾)
• Memory consumption: 4 2 + 4 +⋯+𝐾 = 4𝐾 + 𝑜(. )
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Accelerator Function Unit (FPGA)
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• Input: Continuous data packets from FPGA on-chip cache
• Buffer management:

– Input: FIFO-policy, Output: static
• Task parallelism p: # of Merge Sort Accelerator (MSA) in parallel
• Resource management tradeoff

– Memory consumption: 4𝑝𝐾
– # of stages in each MSA vs. # of MSAs in parallel (task parallelism)
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Serial Merge (CPU)
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• Time complexity: 𝑂(𝑁 log 62)
• Merge order: iteratively from left to right
• Support concurrent processing with FPGA
• Synchronization with FPGA: shared flag in coherent cache system



Design Tradeoff Analysis
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• Given N, on-chip memory size, memory bandwidth,
Choose p and K

• CPU serial merge time complexity: 𝑂 𝑁 log62 , where N is the input size
and K is the sub-block size.

• FPGA resource management tradeoff
– FPGA on-chip memory consumption: 4𝑝𝐾
– # of stages in each MSA vs. # of MSAs in parallel (task parallelism p)

• Throughput
– Given FPGA-cache interconnection bandwidth and on-chip memory  ( = 

product of 𝑝 and 𝐾), there exists a pair (p, K) to maximize the throughput



Optimization

19

• Optimize for FPGA on-chip cache
– Sub-block fits in FPGA on-chip cache
– High cache hit rate due to spatial locality

• Optimize for memory access
– FPGA cache pre-fetching
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Experimental Setup

21

• Platform and Tools
– Intel QuickAssist FPGA QPI Platform
– Altera Stratix V FPGA + Intel Xeon E5-2600 v2 processors (2.8 GHz)
– 6 Gbytes/s [1] FPGA-cache interconnection bandwidth (Intel QPI)
– 128 Kbytes 2-way set-associative FPGA on-chip cache

• Input data sequences in external memory
– Random data (32-bit keys)

• Performance metric
– Throughput



Experimental Results (1)
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• Design tradeoff exploration
– Observation: FPGA data consumption rate matches FPGA-cache

interconnection bandwidth: 4𝑝𝑓 = 𝐵
– Altera FPGA 𝑓 = 200	𝑀𝐻𝑧
– Intel QPI 𝑩 = 𝟔	𝑮𝒃𝒚𝒕𝒆𝒔/𝒔
– For each p vary K
– (Using available on-chip memory)

maximum throughput achieved when
task parallelism is 8

– Input size: 4K-key sequence
– Experimental results match

observation
– Best configuration: 𝑝 = 8, 𝐾 = 16384



Experimental Results (2)
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• Performance compared to CPU-only and FPGA-only baselines
– Fix 𝑝 = 8, 𝐾 = 16384 for FPGA, vary the input size
– CPU-only: quicksort in C++ standard library
– FPGA-only: MSA without help of the CPU, projected for large input size
– Problem size:

4K-keys ~ 128M-keys
– 2.1x ~ 2.5x compared to

FPGA-only baseline
– 2.1x ~ 5.3x compared to

CPU-only baseline
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Experimental Results (3)
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• Performance compared with the state-of-art
– [8] (FPGA ‘11): 43 K-key or 21.5 K-key data sequences
– [19] (VLDB ’12): for sorting data sets 

consisting of 8K-key data sequences 
– [20] (DAC ’12): 16 K-key streaming 

data sequences
– Our design: 4K-key data sequences

in external memory
– 2.59x ~ 3.90x compared to [8]
– 1.38x ~ 3.88x compared to [20]
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Conclusion and Future Work
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• Conclusion
– Accelerated sorting on CPU-FPGA platform

• Merge Sort Accelerator in FPGA
• Serial Merge in CPU

• Future Work
– Accelerate FPGA data access by memory pipelining and pre-caching
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