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Rationale
• Convolutional Neural Networks (CNNs) represent the 

state of the art in image recognition and classification

• CNNs are applied in different fields like Big Data 
analysis, video surveillance and robot vision

• However…
– due to the huge amount of data to be processed, it is 

crucial to find techniques to speed up the computation
– In particular, the dataflow pattern of CNN classification 

algorithm results to be suitable for hardware acceleration
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Proposed Solution

• A framework to automatically generate a hardware 
implementation of CNNs on FPGAs, based on the HLS of 
configurable offline-trained networks

• Main features of the framework:
– generation of a synthesizable C++ code starting from the weights

of a CNN
– generation of scripts for Xilinx Vivado and Vivado HLS toolchains
– CNN design customization and support for Zedboard and Zybo

platforms
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Motivation

• In order to generate the weights of a CNN, a 
software version of the CNN itself has to be built

• So, why should one use this framework?
– HLS tools deal only with a small set of programming

languages (C, C++, etc.), while machine learning
frameworks use many different languages

– Even though the CNN is implemented in C/C++, it may not
be synthesizable
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Convolutional Neural Networks

• A CNN is a particular type of Artificial Neural Network 
inspired by cells in the primary visual cortex of animals [1]

• A CNN is composed of one or more convolutional and 
linear layers

• In this example, the CNN is of 2 convolutional layers and 1 
linear layer
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Convolutional Layers

• extract features from images by applying different filters
(kernels)

• the more layers are used, the more complex features
are extracted

• may be alternated with sub-sampling layers to reduce 
stored data
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Linear Layers

• Implemented as a fully connected Multi-Layer Perceptron
• group information collected by convolutional part 
• predict the class of the initial input image 
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State of the Art
• Nowadays CNNs are employed in different fields:

– Human action recognition [2]
– Image classification [3]
– Natural language processing [4]

• The dataflow pattern of classification phase well suits
hardware acceleration on both GPUs [5] and FPGAs [6]

• To the best of our knowledge, there are no available
frameworks that ease the synthesis of CNNs on FPGAs
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The Proposed Framework

• We propose a easy-to-use 
framework that allows to design 
and configure a CNN

• The front-end is designed as a 
web application

• The back-end is designed in 
Python
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Input

• The input are the weights of a 
trained CNN

• The weights may be generated
by means of machine learning
framework like Torch [7] and 
TensorFlow [8]
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[7]	“Torch	Framework.”	[Online].	Available:	http://torch.ch
[8]	“TensorFlow.”	[Online].	Avaliable:	https://www.tensorflow.org



Network Generation

Customization of:
– Convolutional part

• Number of layers
• Size and number of kernels
• Presence of sub-sampling
• Kernel size of sub-sampling

– Linear part
• Number of layers
• Number of neurons
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Hardware Design

• Choice of target platform
(Zybo or Zedboard)

• Hardware design composed of:
– ZYNQ7 Processing System 
– AXI DMA
– 2 AXI Interconnect
– Processor System Reset
– CNN IP Core

• The CNN IP Core uses AXI4-Stream 
Connection for data streaming
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Output

• Generation of
– CNN C++ source code 
– tcl scripts for Xilinx Vivado and 

Vivado HLS toolchains
(2015.2 version)

• HLS and bitstream generation is
(at the moment) up to the user
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Experimental Results

• We synthesized different types of CNNs
for Zedboard platform

• FPGA performance were compared with 
ARM A9 processor in terms of:
– Prediction error
– Execution time
– Power/energy consumption

• We employed USPS and CIFAR-10 [9]
datasets
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[9]	“CIFAR-10.”	[Online].	Available:	http://www.cs.toronto.edu/∼kriz/cifar.html



Test 1
Setup
• 16x16 grayscale USPS Dataset
• one convolutional layer:

– six 5x5 kernels and sub-sampling
• one linear layer:

– 10 neurons 
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Test 2
Setup
• 16x16 grayscale USPS Dataset
• one convolutional layer:

– six 5x5 kernels and sub-sampling
• one linear layer:

– 10 neurons
• Directives:

– DATAFLOW
– PIPELINE
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Test 3
Setup
• 16x16 grayscale USPS Dataset
• 1° convolutional layer:

– six 5x5 kernels and sub-sampling
• 2° convolutional layer:

– six 5x5 kernels and sub-sampling
• one linear layer:

– 10 neurons
• Directives:

– DATAFLOW
– PIPELINE
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Test 4
Setup
• 32x32 RGB CIFAR-10 Dataset
• 1° convolutional layer:

– Twelve 5x5 kernels and sub-sampling
• 2° convolutional layer:

– Thirty-six 5x5 kernels and sub-sampling
• 1° linear layer:

– 36 neurons
• 2° linear layer:

– 10 neurons
• Directives:

– DATAFLOW
– PIPELINE

19

Prediction	Error Execution	Time
Speedup

Power Energy

Software Hardware Software Hardware CPU CPU+FPGA Software Hardware

89.4% 89.4% 2565s 223s 11.5X 2.2W 4.37W 5643J 975J

FP
G

A 
R

es
ou

ce
 U

til
iz

at
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BRAM DSP Slices Flip-Flops LUT Memory LUT



Experimental Results Summary 20

CPU
CPU + FPGA

En
er

gy
 C

on
su

m
pt

io
n 

(lo
ga

rit
hm

ic
 s

ca
le

)

1

101

102

103

104

Test 1 Test 2 Test 3 Test 4

FP
G

A 
Sp

ee
du

p 
w.

r.t
. C

PU

0

2

4

6

8

10

12

Test 1 Test 2 Test 3 Test 4



Conclusions & Future Works
• We presented a preliminary framework for the 

automation of HLS of CNNs

• We plan to:
– Reduce FPGA resource consumption
– Expand the framework to support other platforms
– Add more CNN configuration options

• The new version of the framework will be online at:
http://cnn2fpga.hosting.necst.it

• Follow us on Facebook: 
CNNECST-Convolutional Neural Network 
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