
Resource-Efficient Scheduling for 
Partially-Reconfigurable FPGA-

based Systems

Andrea Purgato: andrea.purgato@mail.polimi.it

Davide Tantillo: davide.tantillo@mail.polimi.it

Marco Rabozzi: marco.rabozzi@polimi.it

Donatella Sciuto: donatella.sciuto@polimi.it

Marco D. Santambrogio: marco.santambrogio@polimi.it



/232

Objectives

Given:
• a taskgraph representing an application.
• a heterogeneous board, with a reconfigurable logic part (FPGA) and homogeneous 

processors.

Provide a Mapping and Scheduling of the tasks considering:
• resources availability of FPGA.
• dependences among the tasks.
• partial reconfiguration constraints.

Minimize the execution time of the schedule.



/233

Outline

1. Problem Description

2. State-of-the-art

3. Implementation

4. Results Analysis

5. Conclusions and Future Work



/234

Problem Description (1/3)

TASK

DEPENDENCY

The description of the application is given as a Taskgraph.

It is a Direct Acyclic Graph (DAG) describing:

• the functionality of the program, through Tasks.

• and dependency among them.

Task 0

Task 1 Task 2

Task 3

Task 4 Task 6Task 5



/235

Problem Description (2/3)

The target architecture is a heterogeneous board composed of:

• A reconfigurable logic part (FPGA).

• Homogeneous processors.

A task may be executed on:

• the FPGA logic (HW).

• a processor on the board (SW).

Each task can have both HW and SW implementations.

Task

Impl. 
HW 1

Impl. 
HW 2

Impl. 
SW

FPGA

CPU1 CPU2 CPUN...



/236

Problem Description (3/3)

The selection of the implementation for each task can change the final solution.

implem. time resources

t1_1 2 6

t1_2 5 3

t2_1 4 3

t3_1 3 3

Reconfiguration

t1_1

Reconfiguration

t3_1

t2_1

Rec.

t1_2

t3_1

t2_1

t1

t2t3

Single region Two regions

T
im

e

Resources

HW Implementations with large 
resources requirements:
• Generally faster.
• Higher reconfiguration time.

HW Implementations with small 
resources requirements:
• Generally slower.
• Faster to reconfigure.



/237

State-of-the-art

Authors
Partial 

Reconfiguration 
aware

Explicit 
communication 

handling

Multiobjective
optimization

Multi-resources 
Floorplan
Validation

Tunable 
performance

Cattaneo et al. [1] Yes Yes No No No

Deiana et al. [2] Yes No Yes Yes Yes

Redaelli et al. [3] Yes Yes No No No

Fekete et al. [4] No Yes No No No

Proposed Approach Yes No No Yes Yes

[1] R. Cattaneo, R. Bellini, G. Durelli, C. Pilato, M. Santambrogio, and D. Sciuto, “Para-sched: A reconfiguration-aware scheduler for reconfigurable
architectures,” in Parallel Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International, May 2014, pp. 243–250.
[2] E. Deiana, M. Rabozzi, R. Cattaneo, and M. Santambrogio, “A multiobjective reconfiguration-aware scheduler for fpga-based eterogeneous architectures,” in 
ReConFigurable Computing and FPGAs (ReConFig), 2015 International Conference on. IEEE, 2015.
[3] F. Redaelli, M. D. Santambrogio, and S. O. Memik, “An ilp formulation for the task graph scheduling problem tailored to bi-dimensional reconfigurable
architectures,” Int. J. Reconfig. Comput., vol. 2009, pp. 7:1–7:12, Jan. 2009.
[4] S. Fekete, E. Kohler, and J. Teich, “Optimal fpga module placement with temporal precedence constraints,” in Design, Automation and Test in Europe, 2001. 
Conference and Exhibition 2001. Proceedings, 2001, pp. 658–665.



/238

Proposed Approach

We propose two different approaches:

Both present:
• Efficient use of the available resources.
• Multi-resources floorplan validation.

• Single iteration.
• Low execution time.
• Deterministic solution.

Deterministic Approach Randomized Approach

• Multiple iterations.
• Fixed execution time.
• Improved solution.



/239

Algorithm Overview

The algorithm is composed by eight different steps:

1. Implementation selection

2. Critical path extraction

3. Regions definition

4. Software tasks balancing

5. Start and end time computation

6. Software tasks mapping

7. Reconfigurations scheduling

8. Feasibility check



/2310

1. Implementation Selection

Uses a cost index to compare HW implementations of a task.

𝑐𝑜𝑠𝑡𝑖 =
 𝑟∈𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑠𝑟 ∗ 𝑟𝑒𝑠𝑖,𝑟
 𝑟′∈𝑅𝑤𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑠𝑟′ ∗ 𝑚𝑎𝑥𝑅𝑒𝑠𝑟′

+
𝑡𝑖𝑚𝑒𝑖
𝑚𝑎𝑥𝑇

𝑤𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑠𝑟 = 1 −
𝑚𝑎𝑥𝑅𝑒𝑠𝑟

 𝑟′∈𝑅𝑚𝑎𝑥𝑅𝑒𝑠𝑟′

𝑚𝑎𝑥𝑇 = 
𝑡∈𝑇
min
𝑖∈𝐼𝑡
𝑡𝑖𝑚𝑒𝑖

• More importance is given to scarce resources.
• High cost is given to implementations having high execution time or high resource usage.

For each task, chose an implementation with minimum execution time among:
• the available SW implementations.
• the available HW implementations with lowest cost.

• 𝑹: set of available resources.
• 𝑻: tasks in the taskgraph.
• 𝑰: set of implementations.
• 𝑰𝒕: set of implementations for task 𝒕 ∈ 𝑻.
• 𝒓𝒆𝒔𝒊,𝒓: resources of type 𝒓 ∈ 𝑹 required by HW 

implementation 𝒊 ∈ 𝑰.
• 𝒎𝒂𝒙𝑹𝒆𝒔𝒓: number of resources of type 𝒓 ∈ 𝑹

available on the FPGA.
• 𝒕𝒊𝒎𝒆𝒊: execution time of implementation 𝒊 ∈ 𝑰.



/2311

2. Critical Path Extraction

Method Used: Critical Path Method (CPM).

• Generates a time interval for each task: 𝑤𝑡 = 𝑇𝑀𝐼𝑁𝑡 , 𝑇𝑀𝐴𝑋𝑡 .

• Each task should be executed in its interval to avoid delay.

• Tasks in the critical path are labeled as Critical.

Task 0

Task 1 Task 2

Task 3

Task 4 Task 6Task 5

Task 7



/2312

3. Regions Definitions

Defines the reconfigurable areas for the heterogonous board used.

In this phase, an efficiency index is defined for each HW implementation 𝒊 ∈ 𝑰.

𝑒𝑓𝑓𝑖 =
𝑡𝑖𝑚𝑒𝑖

 𝑟∈𝑅 𝑟𝑒𝑠𝑖,𝑟 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑅𝑒𝑠𝑟

Critical tasks are processed before non-critical tasks. All the tasks are ordered with 
respect to the efficiency index.

Critical Tasks:
1. Check if existing area can map the task.
2. Create a new area.
3. Switch to SW implementation.

Non-Critical Tasks:
1. Create a new area.
2. Check if existing area can map the task.
3. Switch to SW implementation.

Check if existing area can map the task: NO CONFLICT with already placed tasks.



/2313

4. Software Tasks Balancing

In the previous phase some tasks may have switched to a SW implementation.

• Time intervals for these tasks are modified.

• In order to improve the schedule we check whether a task can be moved back to a 

HW implementation.



/2314

5. Start/End Calculation

• Computes the Start time and the End time for each task.

𝑇𝑆𝑇𝐴𝑅𝑇 = 𝑇𝑀𝐼𝑁

𝑇𝐸𝑁𝐷 = 𝑇𝑆𝑇𝐴𝑅𝑇 + 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒

• Checks if delay is generated.

𝑇𝐸𝑁𝐷 > 𝑇𝑀𝐴𝑋

• If delay is generated it is propagated in the 
subgraph of the task that generates it.

Task 0

Task 1 Task 2

Task 3

Task 4 Task 6Task 5

Task 7

Task 3 generates delay



/2315

6. Software Task Mapping

• All the SW tasks are mapped on the CPUs available on the board.

• The tasks are assigned to the CPU that generates the lowest delay.

Task assigned to CPU2



/2316

7. Reconfiguration Tasks

Step 1: 
• Reconfiguration tasks are generated for the areas having multiple mapped tasks.
• Each reconfiguration has a time window in which should be executed to avoid delay.

Step 2: 
• Schedules all the reconfiguration tasks that have a successor critical task.
• Schedule generated ordering the reconfiguration tasks by 𝑇𝑀𝐼𝑁.

𝑇𝑀𝐼𝑁,𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝐸𝑁𝐷,𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟
𝑇𝑀𝐴𝑋,𝑟𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑆𝑇𝐴𝑅𝑇,𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟

Step 3: 
• Schedules all the remaining reconfigurations.
• Reconfiguration tasks ordered by 𝑇𝑀𝐼𝑁.
• Schedule generated inserting reconfiguration tasks in the first available slot.

Reconfiguration Time Window



/2317

8. Feasibility Check

• Checks if the solution found fits in the FPGA.

• Performed using a MILP-Based floorplanning algorithm [1].

[1] M. Rabozzi, A. Miele, and M. D. Santambrogio, “Floorplanning for partially-reconfigurable FPGAs via feasible placements detection,” in Field-
Programmable Custom Computing Machines (FCCM), 2015 IEEE 23nd Annual International Symposium, 2015, pp. 252–255.

Scheduling/Mapping

Solution found Reduce available HW resources

Admits valid 
floorplan?

YES NO



/2318

Randomized Version

• In step Regions Definition the tasks are 
processed randomly.

• The program iterates for a fixed amount 
of time given as input.

• At each iteration the randomized 
scheduler is called.

YES

Scheduling/Mapping 
with Randomization

Update best solution

Discard solution

Is the solution 
better than 
the best?

YES NO

Admits valid 
floorplan?

YES NO

Discard solution

Timeout 
reached?

END
NO



/2319

Results Analysis (1/3)

• Tests performed using 100 pseudo-random taskgraphs organized in 10 groups with 10 
taskgraphs each. 

• Within each group the taskgraph has the same number of tasks.

• Each task has one software implementation and 3 hardware implementations with 
heterogeneous resource requirements.

Comparison performed against IS-k algorithm [1] (k = 1 and k = 5) in terms of:
• Scheduling execution time.
• Algorithm execution time.

[1] E. Deiana, M. Rabozzi, R. Cattaneo, and M. Santambrogio, “A multiobjective reconfiguration-aware scheduler for fpga-based heterogeneous
architectures,” in ReConFigurable Computing and FPGAs (ReConFig), 2015 International Conference on. IEEE, 2015.

Experimental settings:



/2320

Results Analysis (2/3)



/2321

Results Analysis (3/3)



/2322

Conclusions and Future Works

Contributions:
• Provided a fast deterministic scheduling heuristic.
• Provided a tunable randomized scheduling algorithm.
• Floorplan validation of the results.

Feature works:
• Leverage module reuse.
• Explicit communications handling among tasks.
• Consider additional optimization metrics (e.g. power consumption).



/2323

Questions?

Thanks for your attention!


