
May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 1

Improving HLS Generated Accelerators
Through Relaxed Memory Access
Scheduling

Johanna Rohde

Christian Hochberger

TU Darmstadt

Computer Systems Group

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 2

Introduction

● High-Level-Synthesis (HLS) can be used to create hardware accelerators from software code.

● For a meaningful acceleration, accelerator must be capable to autonomously access the memory.

● Such memory accesses can be a major bottleneck because multiple accesses to the memory can
target the same memory location.

● In some cases it can be proven at compile time that two accesses are independent. Otherwise, their
order must be preserved which typically leads to an increased cycle times for the execution of one
iteration.

● 3 types of memory dependences:

– Read-After-Write (RAW)

– Write-After-Write (WAW)

– Write-After-Read (WAR, not optimized by our approach. Please refer to our paper for a detailed discussion)

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 3

Problem Statement

● Example 1: WAW Dependence

– Memory dependences are
represented by red edges.

– The data flow graph (DFG) has
a critical path of 3.

– The critical path could be 2 if it
was not for the WAW
dependence.

+

i_1 1

+

j_1 1

j_2i_2

write

write

WAR
read read

i_1 j_1

i_1

j_1
WAW

!=

_6

c_1

_30
WAR

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 4

Problem Statement

● Example 2: RAW Dependence

– By pipelining consecutive
iterations, the next iteration is
started before the previous one
has finished.

– In the example, loop pipelining
is not possible because the
read instruction has to be
scheduled after the write
instruction.

Iteration 1Iteration 0

RAW

>>

|

write

d_1

d2

read

s_1

+

d_1 4

d_2

s_1 4

+

s_2

_24

_25

x_1

-

>

n_2

n_1 32

31

>>

|

write

d_1

d2

read

s_1

+

d_1 4

d_2

s_1 4

+

s_2

_24

_25

x_1

-

>

n_2

n_1 32

31

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 5

Relaxing Memory Dependences

● In hardware accelerators additional logic can be added in order to resolve out-of-
order memory dependence conflicts at runtime.

● Idea:

– Enable a speculative out-of-order execution of memory accesses. This will lead to a
more relaxed DFG providing additional degrees of freedom to the scheduling
algorithm in order to create shorter and faster schedules.

– The correctness of the data is ensured at runtime by bypassing and write squashing.

– Note, this approach does not replace static dependence analysis. It rather adds on
top of it by focusing on those dependences for which the synthesis tool was not able
to prove or disprove aliasing.

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 6

Relaxing Memory Dependences

● Write Squashing for WAW Dependences

– Idea: Write squashing refers to the
process of disabling a scheduled write
instruction at runtime.

– Hardware: A comparator controlling the
enable signal of the first write access.

– Consequence: The addresses of both
memory accesses need to be known for
first write access.

– Changes to the DFG: The WAW
dependence edge is replaced with an
edge that connects the producer of the
second write address with the first write
node.

+

i_1 1

+

j_1 1

j_2i_2

write

WAR
read read

i_1 j_1

i_1

write

j_1

!=

_6
c_1 _30

+

i_1 1

+

j_1 1

j_2i_2

write

write

WAR
read read

i_1 j_1

i_1

j_1
WAW

!=

_6

c_1

_30
WAR

Attention: If multiple writes are
executed out-of-order, multiple
comparators have to be created
and joint by an or-gate.

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 7

Relaxing Memory Dependences

● Bypassing for RAW Dependences

– Idea: Execute the read access speculatively
before the write and compare the addresses
once the data is used. In case of a conflict,
the data from the write operation is bypassed
and replaces the data read from memory.

– Hardware: A multiplexer of which the select
signal is wired to a comparator.

– Consequence: Both addresses as well as
the written value need to be known at the
successors of the read node.

– Changes to the DFG: The edge of the RAW
dependence is removed. New edges for the
addresses and the bypass value are inserted.

Iteration 1Iteration 0

RAW

>>

|

write

d_1

d2

read

s_1

+

d_1 4

d_2

s_1 4

+

s_2

_24

_25

x_1

-

>

n_2

n_1 32

31

>>

|

write

d_1

d2

read

s_1

+

d_1 4

d_2

s_1 4

+

s_2

_24

_25

x_1

-

>

n_2

n_1 32

31

Iteration 1Iteration 0

>>

|

write

d_1

d2

read

s_1

+

d_1 4

d_2

s_1 4

+

s_2

_24

_25

x_1

-

>

n_2

n_1 32

31

>>

|

write

d_1

d2

read

s_1

+

4d_1

d_2

s_1 4

+

s_2

_24

_25

x_1

-

>

n_2

n_1 32

31_25

Attention: If the read is
executed before multiple write
accesses, a multiplexer with
multiple input ports has to be
created.

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 8

Relaxed Memory Access Scheduling (RMAS)

● Problem: Patching all memory dependences before scheduling is not always possible
because the number of comparators for a single write-squash and the number of multiplexer
input ports has to be limited.

● Therefore, we developed an algorithm that automatically detects those memory
dependences that are critical to the performance.

● Summary:

– The Relaxed Memory Access Scheduling (RMAS) algorithm searches a DFG for memory
dependences that are on the critical path.

– If possible, those dependences are patched as explained before.

– This process is repeated until no further improvements can be made.

● For more information, please refer to the paper.

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 9

Experimental Results

● The evaluated system consists of a SpartanMC
soft-core, the hardware accelerators and a cache
system. Everything was synthesized for a Nexys
Video Artix-7 (XC7A200T) FPGA board.

● On average, the latency was reduced by 6.46 %.
This includes those benchmarks, that were not
effected by the optimization because they do not
have any critical memory dependences

● On average, inserting additional multiplexer and
comparators into the accelerator did not have an
significant effect on the critical path

● On average, the number of LUTs increased by
10% and the number of flip-flops increased by 2%.

∆ Cycles Ratio
Frequency

Ratio
LUT

Ratio
Flip-
Flops

adpcm 0.21 % 1.07 1.00 1.00

bcnt 1.09 % 1.00 1.00 1.00

blit -39.85 % 1.01 1.42 1.14

compress -8.05 % 1.05 1.12 0.99

crc -22.36 % 0.98 1.30 1.07

engine 0.00 % 1.00 1.00 1.00

g3fax 0.03 % 1.01 1.00 1.00

huffman -0.55 % 1.04 1.26 1.04

jpeg -0.31 % 0.95 1.04 1.00

pocsag 0.00 % 0.99 1.00 1.00

ucbqsort -1.22 % 1.01 0.98 0.97

Average -6.46 % 1.01 1.10 1.02

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 10

Conclusion

● We have presented an algorithm that relaxes the scheduling of memory accesses by
inserting read-bypasses and write squashes into performance critical parts of a DFG.

● Some applications do not contain critical memory accesses. They are neither
improved, nor slowed down.

● Some applications contain memory accesses that could be relaxed but the gain was
only in parts of the code that did not contribute much to the overall runtime.

● Finally, some applications contain memory accesses that greatly benefit from the
relaxed scheduling and gain substantial runtime.

● On average, the improvement is about 6.5%. The amount of additional hardware
resources is in a similar range.

May 8, 2020 | TU Darmstadt | Computer Systems Group | Johanna Rohde | 11

The End

Questions?

Feedback?

Interested in discussing the details
of our paper?

Please contact me:

Johanna Rohde

rohde@rs.tu-darmstadt.de

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

