RAW2020, May 18-19, 2020

A Microcode-based Control Unit for Deep Learning Processors

<u>Qian Zhao¹</u> (cho@ai.kyutech.ac.jp), Yasuhiro Nakahara², Motoki Amagasaki², Masahiro Iida², and Takaichi Yoshida¹

¹ Kyushu Institute of Technology, ² Kumamoto University

Japan

Introduction

A fixed ISA-based controller may limit the flexibility of DPU

Provide full control over the DPU in a writable firmware, and thus delivers high flexibility and shorter dev. life cycle.

ISA: Instruction set architecture, DPU: Deep learning processing unit

DPU architecture using our approach

Microcode-based control unit is suitable for DPU because:

- DPUs have fewer instructions than general-purpose processors.
- The control flow and data flow of DPUs are much less complex and more predictable than those of general-purpose processors.

Soft-sequencer control unit design

Soft-sequencer structure

Bit	Field name	Function
0-3	INST_COUNTERn_WE	Write enable of $\text{CNT}n^{1)}$
4-7	$INST_JUMP_COUNTERn$	Loop jump if $CNTn > 1$
8-10	INST ADDR n WE	Write enable of $ADDRn^{2)}$
11 - 12	INST_ADDRn_BAK	Backup enable of $ADDRn$
13 - 15	(Reserved)	-
16-47	INST_PC	Immediate for $PC^{3)}$
48-111	INSTCOUNTERn	Immediate for $\text{COUNTER}n$
112 - 159	$INST_ADDRn$	Immediate for $ADDRn$
160-217	$INST_CTRLn$	A control signal per bit
217 - 255	(Unused)	-

1)Four 16-bit CNT registers for loop control.2)Three 16-bit ADDR registers for AGU.3)The PC register is 32-bit.

Soft-sequencer fetches a microcode and generates control signal sequences according to the binary status saved in it.

- Simple flow control like loops are implemented in the PC controller, allowing the size of the microcode to be significantly shortened.
- The AGU holds and computes addresses in user memory.
- A designer can add a custom controller to generate signals by combining other control signals.

State transition of PC and AGU design

FPGA implementation

- Device: ADM-PCIE-KU3
- DPU: 32*32 PB array
- Freq.: 100MHz

Resource utilization

	LUTs	FFs	BRAMs
Soft sequencer Control store DPU total	$\begin{array}{c} 17,085 \ (8.4\%) \\ 361 \ (0.2\%) \\ 202,562 \end{array}$	$\begin{array}{c} 440 \; (0.4\%) \\ 3 \; (<\!0.1\%) \\ 106,754 \end{array}$	$\begin{array}{c} 0 \\ 114 \ (43.2\%) \\ 264 \end{array}$

Power: 1.255W in total, control unit(<1%), control store(<3%)

ASIC implementation

- Process: TSMC 40-nm
- DPU: 64*64 PB array
- Freq.: 350MHz
- Area: control unit (5%), control store (5.2%)
- Power: 0.516W in total, control unit(<0.1%), control store(5.2%)

Microprogramming

DPU layout

- Demo DNN: 4 CNN layers, 2 FC layers, CIFAR-10 task
- Lines-of-code: 759 lines of microprogram

- Problem: A fixed ISA-based controller may limit the flexibility of DPU.
- Approach: We propose a microcode-based control unit, which allows control logic to be determined by SW.
- **Pros:** Full control over the DPU in a writable firmware, and thus delivers high flexibility and shorter dev. life cycle.
- Result: We evaluate the proposed control unit using two DPU design cases implemented by FPGA and ASIC. The results show that high flexibility of the proposed control unit can be achieved without obvious performance overhead.