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Background: Q-Table based
Reinforcement Learning

* Q-values: measuring qualities of state-action pairs
—stored in a table

.| Agent
state reward action
St RI A!
L Rz+l (

<] Environment ]<

 Qutperforms Deep Q Network for tractable discrete state
space
* Widely used in robotics & games
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Introduction: Q learning and SARSA

* Q/learning: off-policy reinforcement learning algorithm
* The agent learns optimal policy using absolute greedy
policy (maximize future Q value), behaves using
another policy
 ”Q” value is updated through Bell-man equation until
convergence

Qi+1(S5¢, Ay) = Q(St, Ay) + G[Rt+1 + 1113?( Q(St41,a) — Q(St-.At)]

* SARSA: on-policy reinforcement learning algorithm
 The agent learns optimal policy and behaves using the
same policy such as e-greedy policy

Qi+1(St, Ar) = Q(St, Ar) + [ Re1 +7Q(Se41, Aer1) — Q(St, Ay)]
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Approach: 4-stage pipeline
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Experimental Setup

 Example Grid World Setting
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Case 1 2 3 4 5 6 7
[S] 64 256 1024 4096 16384 65536 262144
|A| 4.8 48 4.8 4.8 4.8 4.8 4.8
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Results

e With 100-200 Mb of on chip memory, our design can support state space of
around 1 million

* Application: Well-suited for edge based robotics applications, where state-
action space is not huge

SARSA m Q-Learning
200 80

189 187 187 186 70

175 60
150 156

100

Throughput (MS/s)

50 10

0 — 64 256 1024 4096 16384 65536
64 256 1024 4096 65536 262144 IS|

Number of States |S|

USC Viterbi

School of Engineering




Comparison with State-of-the-art

* Low resource utilization compared to state-of-the-art implementation on
table-based Q-learning, increasing state-action space does not increase
resource utilization

Multipliers (DSP) utilization

m QTAccel: Multipliers m Baseline

(132'4) _ 370
(56;8) _ 250
(564)  EaSem— 130
(12,8) EaSem— 106
(12/4)  SuSemm 53

c
e
s}

O

M

GJ\
o+

©
o+
(%)

USC Viterbi

Number of multipliers

School of Engineering



Extension: Multi-agent Settings

* State Sharing Learners: poont
* Two agents cooperates Environment Goal > PIPELINE1 ]

: A —
on a task sharing the ’ /R Qx|
: : g Table ' pipELNE2 |
Agent 1 .

same environment (i.e.

A e ]
e Dual Port BRAM Agent 2
same set of states, ual Po
actions)
Environment Agent1 Agent2 - AgentN
* Independent Learners:

* Multiple independent D e s £ .. s
agents trained On Sub-environ:Z:w Sub-envircnm;ia«‘ll : 1 ; 1 ; w
separate environments || ] T T

Age.ma IE -~ BRAM 1 I BRAM 2| - - -‘ BRAM N
N worlds: Q/R/Qmnax Tables
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Thank You!

Contact: Yuan Meng (ymeng643@usc.edu)



